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function of key transcriptional regulators. Through these 
numerous interactions, CBP/p300 has been implicated in 
complex physiological and pathological processes, and, in 
response to different signals, can drive cells towards pro-
liferation or apoptosis. Dysregulation of the transcriptional 
and epigenetic functions of CBP/p300 is associated with 
leukemia and other types of cancer, thus it has been recog-
nized as a potential anti-cancer drug target. In this review, 
we focus on recent exciting findings in the structural mech-
anisms of CBP/p300 involving multivalent and dynamic 
interactions with binding partners, which may pave new 
avenues for anti-cancer drug development.

Keywords Transcriptional coactivator · Transcription 
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Introduction

eukaryotic gene activation requires the concerted function 
of transcription factors and coactivators [1]. Transcription 
activators bind cognate sites in the promoter and enhancers 
of target genes and stimulate transcription by bringing the 
basal (general) transcription machinery, which includes the 
general transcription factors (GTFs) (TFIIA, TFIIB, TFIID, 
TFIIe, TFIIF, and TFIIH) and RNA Pol II itself [2], to the 
transcription initiation site [3]. Although some activators  
can directly interact with the GTFs (e.g., TFIID) [4–6], in 
most cases, additional proteins or multi-protein complexes, 
called coactivators, are required to facilitate this process 
[7–9]. Initially, coactivators were viewed as adaptor pro-
teins that connect the sequence-specific transcription fac-
tors to the basal transcription machinery [7, 8]; however, it 
was later appreciated that some coactivators have additional 

Abstract In eukaryotic cells, gene transcription is regu-
lated by sequence-specific DNA-binding transcription 
factors that recognize promoter and enhancer elements 
near the transcriptional start site. Some coactivators pro-
mote transcription by connecting transcription factors to 
the basal transcriptional machinery. The highly conserved 
coactivators CReB-binding protein (CBP) and its paralog,  
e1A-binding protein (p300), each have four separate trans-
activation domains (TADs) that interact with the TADs of a 
number of DNA-binding transcription activators as well as 
general transcription factors (GTFs), thus mediating recruit-
ment of basal transcription machinery to the promoter. 
Most promoters comprise multiple activator-binding sites, 
and many activators contain tandem TADs, thus multiva-
lent interactions may stabilize CBP/p300 at the promoter, 
and intrinsically disordered regions in CBP/p300 and many 
activators may confer adaptability to these multivalent 
complexes. CBP/p300 contains a catalytic histone acetyl-
transferase (HAT) domain, which remodels chromatin to 
‘relax’ its superstructure and enables transcription of proxi-
mal genes. The HAT activity of CBP/p300 also acetylates 
some transcription factors (e.g., p53), hence modulating the 
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functions. In eukaryotic cells, DNA wraps around histone 
octamers to assemble nucleosomes, which are further pack-
aged into condensed euchromatin that is inaccessible for 
transcription [10]. Another class of transcriptional coactiva-
tors was found to possess chromatin-remodeling or modifi-
cation activity, which opens the chromatin structure to allow 
effective gene transcription [11]. Another level of transcrip-
tional regulation is achieved through the modulation of the 
expression and activation of the coactivators [12].

CBP and its paralog p300 (also called eP300) are tran-
scriptional coactivators for many important transcription 
factors, and perform both the functions discussed above: 
bridging of DNA-binding and general transcription factors 
(Fig. 1a), and relaxation of chromatin through its intrinsic 

histone acetyltransferase (HAT) activity [13–15] (Fig. 1b). 
In addition, CBP/p300 also acetylates some transcription 
factors, thus modulating their activity (Fig. 1c). In some 
specific circumstances, CBP and p300 play distinct roles; 
however, their functions are largely redundant [16]. Because 
of their structural similarity and functional redundancy, CBP 
and p300 are often referred to collectively as CBP/p300.

p300 was first discovered on the basis of its interac-
tion with adenoviral protein e1A, and the chromosomal 
location of p300 gene was subsequently mapped to 22q13  
[17, 18]. Shortly thereafter, CBP was independently iden-
tified as the binding partner and coactivator of cAMP 
response element-binding (CReB) protein, and the CBP 
gene was localized to chromosomal region 16p13.3 [19–21].  
These two proteins share ~75 % sequence similarity and 
~63 % identity. Most known functional domains of CBP/
p300 are found within the highly conserved regions, includ-
ing four recognized transactivation domains (TADs): (1) 
the Cysteine–Histidine-rich region 1 (CH1) that encom-
passes the transcriptional adapter zinc finger 1 (TAZ1) 
domain [22, 23], (2) the CReB-interacting KIX domain 
[24], (3) another Cysteine–Histidine-rich region (CH3) 
containing the transcriptional adapter zinc finger 2 (TAZ2) 
domain and a ZZ-type zinc finger domain [23, 25], and (4) 
the nuclear receptor co-activator binding domain (NCBD), 
which is also called interferon-binding domain (IBiD)  
[26, 27]. These TADs mediate the protein–protein inter-
actions with DNA-binding transcription factors and basal 
transcription machinery, as well as other coactivators. CBP/ 
p300 also contains a catalytic HAT domain that acetylates 
histones and other proteins, and an adjacent Bromo domain 
that recognizes acetylated histone tails [28]. Flanking the 
catalytic core, there is another Cysteine–Histidine-rich  
region (CH2), comprised of the plant homeodomain 
(PHD) (Fig. 2). CBP/p300 interacts with a wide spectrum 
of transcription factors through its four TADs [29]. CBP/
p300 association factors include pro-proliferative proteins 
and oncoproteins: c-Myc [30], c-Myb [31], CReB [19], 
c-Jun [32], and c-Fos [33]; transforming viral proteins: 
e1A [17, 18], and e6 [34]; as well as tumor suppressors 
and pro-apoptotic proteins: p53 [35, 36], Forkhead box 
class O (FOXO) transcription factors 1, 3a, and 4 [37–39], 
signal transducer and activator of transcription (STAT) 1 
and 2 [40, 41], Hypoxia-inducible factors 1α (HIF-1α)  
[42, 43], breast cancer 1 (BRCA1) [44], SMA/MAD 
homology (Smad) proteins [45, 46], the Runt-related 
transcription factor (RUNX) [47], e2 Transcription Fac-
tor (e2F) [48], and e-proteins [49] (Table 1). The pres-
ence of multiple TADs in CBP/p300 and the wide array 
of interaction partners, many of which also have multiple 
TADs, allows for multivalent and combinatorial assem-
bly of complexes [50, 51] (discussed below). CBP/p300 
also acts as a coactivator for nuclear receptors. Rather 

Fig. 1  Functional mechanisms of transcriptional activation by CBP/
p300. CBP/p300 promotes transcriptional activity by recruiting tran-
scriptional machinery to the promoter, and by modifying chroma-
tin structure to facilitate transcription. a CBP/p300 functions as a 
“bridge”, linking the DNA-bound transcription factors (activators) to 
basal transcription machinery through direct interactions with TFIID 
(comprised of TATA-binding protein (TBP) and 13 TBP-associated 
factors (TAFs)), TFIIB, and RNA polymerase II (RNA Pol II), thus 
promoting pre-initiation complex (PIC) assembly. b CBP/p300 acety-
lates histones through its histone acetyltransferase (HAT) domain, 
resulting in chromatin remodeling and relaxation of chromatin struc-
ture to enable transcription. CBP/p300 also recruits the coactivators 
PCAF and GCN5, which also possess HAT activity. c CBP/p300 
HAT activity also acetylates certain transcription factors, modulating 
their activities positively or negatively
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than the TADs, these interactions are mediated by short 
peptide motifs of CBP/p300, which are recognized by the 
activation function-2 (AF-2) region of the ligand-binding 
domains (LBDs) of nuclear receptors including retinoid 
X receptor (RXR) [52], androgen receptor (AR) [53], and 
estrogen receptor (eR) [54].

Through its cooperation with diverse transcription fac-
tors, CBP/p300 is involved in many cellular processes, and 
can promote diametrically opposed outcomes, i.e., apopto-
sis versus cell proliferation, dependent on the cell-type and 
context. In this review, we will focus on (1) the structural 
mechanisms of CBP/p300-transcription factor interactions, 
including the importance of intrinsically disordered regions 
(IDRs) and multivalent interactions, (2) the regulation of 

the coactivator function of CBP/p300 by post-translational 
modifications (PTMs), (3) roles for CBP/p300 in human dis-
eases, especially cancer, and (4) the current efforts towards 
development of small molecules targeting CBP/p300 as 
potential therapeutics.

Interactions between CBP/p300 and basal transcription 
machinery and other coactivators

CBP/p300 associates with basal transcription machinery

CBP/p300 has been found to bind to some GTFs, such 
as TFIIB and TATA-box binding protein (TBP), and it 

Fig. 2  Domain architecture and structures of domains of CBP/p300. 
The domain architecture of CBP/p300 is shown in the middle with 
the probability that regions are intrinsically disordered as predicted 
by DISOPReD2 [217]. The structures of each domain are also shown 
and labeled. Top the CBP Bromo domain (PDB: 3DwY); the Zn2+-
binding mode of the PHD domain of CBP/p300 (no high-resolution  
structure available); the p300 HAT domain in complex with an inhibi-
tor (PDB: 3BIY); the CBP ZZ domain (PDB: 1TOT). Bottom the 
CBP TAZ1 domain (PDB: 1U2N); KIX domain in complex with 
FOXO3a CR2C-CR3 (note that KIX comprises two binding sites and 

the two FOXO3a TADs each bind both sites, thus CR2C-CR3 inter-
acts with KIX in two distinct dynamically exchanging, equally popu-
lated orientations. PDB: 2LQH and 2LQI); the p300 TAZ2 domain 
(PDB: 3IO2); the molten globule state structure of CBP NCBD 
domain (PDB: 2KKJ), and the structured complex of NCBD with 
p53 formed through binding-coupled folding (PDB: 2L14). Transac-
tivation domains that primarily interact with transcriptional activators 
are shown below and those that interact primarily with chromatin are 
shown on top
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Table 1  Summary of CBP/p300 binding partners

Domain Interaction 
partner

Category Ref/PDB Notes

TAZ1 TBP General transcription 
factor

[59] Mapped by GST-pull down

p53 Transcription factor [50, 100] Kd = 1 μM, phosphorylation enhances binding

FOXO3a Transcription factor [51] Kd = 71 μM, S626 phosphorylation enhances binding

HIF-1a Transcription factor [99, 104]/1L8C Kd = 7 nM, Asparagine hydroxylation and  
S-nitrosylation of HIF-1α decreases binding

CITeD2 Transcription factor [105–107]/1R8U, 1P4Q Kd = 13 nM,

STAT2 Transcription factor [112]/2KA4 Kd = 58 nM

KIX (c-Myb site) CReB
(pKID)

Transcription factor [19, 72–74]/1KDX Kd = 700 nM for KID phophorylated at S133, which 
enhances binding. Phosphorylation on S111, 121, and 
142 decreases binding

c-Myb Transcription factor [77–79]/1SB0 Kd = 15 μM, cooperative with MLL in KIX binding

p53 Transcription factor [84] AD1: Kd = 242 μM, AD2: Kd = 94 μM, AD1 and  
AD2 both bind the c-Myb site in each of two  
opposite orientations; phosphorylation enhances binding

FOXO3a Transcription factor [51]/2LQH, 2LQI CR2C-CR3 binding to the c-Myb site: Kd = 258 μM, 
S626 phosphorylation enhances the binding

KIX (MLL site) MLL Transcription factor [79, 80]/2AGH Kd = 2.8 μM, cooperative with c-Myb in KIX  
binding

p53 Transcription factor [84] AD1: Kd = 211 μM, AD2: Kd = 49 μM; AD1  
and AD2 both bind the MLL site in each of two  
opposite orientations; phosphorylation enhances 
binding

FOXO3a Transcription factor [51]/2LQH, 2LQI CR2C-CR3 binding to the MLL site: Kd = 335 μM, 
S626 phosphorylation enhances binding

HTLv-1HBZ Transcription factor [85] Kd = 3 nM, two helical TADs bind to one  
site cooperatively

c-Jun Transcription factor [86] Kd = 30 μM

e2A Transcription factor [49, 88, 89] Kd = 12 μM

HTLv-1 Tax viral protein [90] Affinity is lower than that of MLL

KIX (two sites) p53 Transcription factor [84] Full p53 TAD: AD1-AD2 binding to KIX: 
Kd = 9.3 μM; there are totally 8 distinct  
dynamically exchanging conformations

FOXO3a Transcription factor [51]/2LQH, 2LQI FOXO3a CR2C-CR3 binding to KIX: Kd = 85 μM; 
there are in two distinct dynamically exchanging, 
equally populated conformations

KIX (binding site 
unknown)

BRCA1 Transcription factor [87] Interaction requires methylation of CBP/p300 by 
CARM1

SReBP Transcription factor [91]

Bromo Histone 4 Histone [63]/2RNY Kd = 218 μM, K20 acetylation is required

p53 Transcription factor [165]/1JSP Kd = 187 μM, K382 acetylation is required

TAZ2 e1A Adenoviral protein [60, 108, 109]/2KJe Kd is in low nM range

TFIIB General transcription 
factor

[60] Displaced by e1A

PCAF Coactivator [67] Competes with e1A for CBP/p300 binding

GCN5 Coactivator [69] Binding site is broader than PCAF

p53 Transcription factor [50, 100,  
101]/2K8F

Kd = 20 nM, two p53-binding sites on  
TAZ2, phosphorylation enhances binding

FOXO3a Transcription factor [51] Kd = 33 μM, S626 phosphorylation enhances the 
binding

STAT1 Transcription factor [112]/2KA6 Kd = 52 nM

MeF2 Transcription factor [114–117]/3P57 Kd can not be determined due to multiple  
species in solution
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can be co-purified with Pol II as a part of the RNA Pol II 
holoenzyme (Table 1). In HeLa cell nuclear extract, CBP 
is present in the RNA Pol II holoenzyme [55]; however, 
this association requires RNA helicase A, which suggests 
that the interaction is indirect [56]. These studies revealed 
one mechanism by which the binding of CBP to the tran-
scriptional activator CReB promotes transactivation, con-
firming an adaptor role for the transcriptional coactivator 
CBP. Similarly, a direct interaction between RNA Pol II 
and p300 was observed, which may be enhanced by RNA 
helicase A [57]. Antibody-mediated depletion of CBP 
from the RNA Pol II holoenzyme reduced association of 
the basal transcription machinery components TFIIB and 
TBP [58], indicating that CBP provides the binding sites 
for TFIIB and TBP. Biochemical studies with recombinant 
proteins mapped the TBP-binding site to the N-terminal 
CH1/TAZ1 region [59], whereas TFIIB interacts with the 
TAZ2 zinc finger domain within the CH3 region [60]. Inter-
estingly, both these GTF-binding sites overlap with those 
of the TADs of many transcriptional activators. CBP/p300 
was demonstrated to acetylate TFIIeβ and TFIIF, suggest-
ing that transient interactions occur between these pro-
teins [61]. Although the interactions between CBP/p300 
and these GTFs were characterized in vitro, the structural 
details are still elusive. More biochemical and structural 
investigation will be required to elucidate the mechanisms 
of basal transcription machinery recruitment by CBP/p300.

CBP/p300 cooperates with other transcriptional  
coactivators

CBP/p300 provides a docking platform not only for the 
components of the basal transcription machinery  but also 
for some other transcriptional coactivators (Table 1), which 
cooperate in the efficient activation of gene transcription 
under various conditions. CBP/p300 interacts with the 
transcriptional coactivators p300/CBP association factor 
(PCAF) and GCN5, which comprise a related HAT family 

[62]. Relative to CBP/p300, these coactivators are struc-
turally diverse and exhibit different substrate specificity in 
the histone targets of both their HAT activities and their 
acetyl-lysine-binding Bromo domains [63, 64]. Although 
PCAF and GCN5 can function independently [65, 66], in 
certain tissues, they interact with CBP/p300 and function 
synergistically. PCAF competes with e1A for CBP/p300 
TAZ2 domain binding, and over-expression of PCAF in 
HeLa cells inhibits cell cycle progression [67]. Moreo-
ver, formation of a PCAF:CBP/p300 coactivator complex 
is required for CLOCK/BMAL1-mediated transcription 
in NIH3T3 cells [68]. Both N- and C-terminal regions of 
the coactivator GCN5 interact with CBP/p300 through a 
binding site that encompasses the TAZ2 domain as well as 
flanking regions, which is more extensive than the PCAF-
binding site [69]. Cooperation between GCN5 and p300 
increases the TGF-β-induced transcriptional activities of 
Smad transcription factors [70]. The reduced viability of 
mice lacking one allele of both GCN5 and p300 suggests 
that p300 cooperates specifically with GCN5 to provide 
essential functions during early embryogenesis [71].

Structural basis of CBP/p300-transcription factor 
interactions

CBP/p300 interacts with the sequence-specific DNA-
binding transcription factors through its four conserved 
TADs. The well-characterized CBP/p300 TADs include 
the TAZ1 domain in the CH1 region, the KIX domain, the 
TAZ2 domain in the CH3 region, and the NCBD domain 
in the C-terminal Q-rich region (Fig. 2). These domains 
interact with the TADs of transcription factors, many of 
which are intrinsically disordered in isolation and undergo 
binding-coupled folding. The structures of CBP/p300 
domains in complex with transcription factor TADs have 
been studied extensively (Table 1), and are discussed in 
the following sections. These studies have shed light on 

Domain Interaction 
partner

Category Ref/PDB Notes

NCBD (IBiD) p53 Transcription factor [50, 100, 112]/2L14 Kd = 9.3 μM; binding-coupled folding  
of NCBD; phosphorylation enhances binding

IRF-3 Transcription factor [118]/1ZOQ Binding-coupled folding of NCBD

ACTR Coactivator [27, 120, 121]/1KBH Kd = 34 nM

LXXLL motifs Retinoid X 
receptor

Nuclear receptor [52] Activation function-2 region of the ligand- 
binding domains of nuclear receptors interacts with 
one or more of the CBP/p300 LXXLL motifsestrogen  

receptor
Nuclear receptor [53]

Androgen  
receptor

Nuclear receptor [54]

Table 1  continued
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the mechanisms of the coactivator recruitment step of tran-
scription activation.

Transactivation domain interactions with the  
CReB-binding (KIX) domain

CBP was identified by its interaction with a phosphorylated 
form of the transcription factor CReB [19–21]. Protein 
kinase A (PKA) phosphorylates Ser133, which is located 
in the so-called kinase-inducible domain (KID) of CReB, 
and phosphorylated KID (pKID) specifically binds to the 
KIX domain of CBP/p300 [19, 72]. Several structures of 
KIX in complex with transcription factor TADs have been 
determined by solution nuclear magnetic resonance (NMR) 
spectroscopy, including the KIX–pKID complex [73]. The 
KIX domain is composed of a three-helix bundle with 
two additional short 310 helices. The apo-pKID is largely 
unstructured, but residues 121–143 form two mutually per-
pendicular helices when bound to KIX [73]. The binding 
process is initiated by the formation of an encounter com-
plex [74], and computational simulations showed that both 
conformational selection [75] and induced-fit [76] contrib-
ute to the interaction. pKID binds a hydrophobic groove 
formed by helices H1 and H3 of KIX, with a Kd of about 
700 nM, which is ~100-fold tighter than unphosphorylated 
KID peptide. It was proposed that the mechanism by which 
phosphorylation enhances binding involves an interaction 
between the phosphate group and the side chain of KIX 
Y658 [24, 73, 77].

As structures of other TAD–KIX complexes were solved, 
a surprising degree of diversity in the binding modes of 
transactivation peptides was revealed. The TAD of the tran-
scription factor c-Myb binds the same site as CReB (KIX 
H3–H4), but binds as a single helix [78]. Furthermore, a 
second site involved in the specific recognition of transac-
tivation peptides was identified in the KIX domain. On the 
face of KIX opposite the H1–H3 groove, there is another 
hydrophobic groove, comprised of H2, H3, and the 310 helix 
G2, which can be occupied by the TAD of the myeloid- 
lymphoid leukemia (MLL) protein. Remarkably, the c-Myb 
and MLL transcription factors bind to the two KIX sites 
simultaneously in a cooperative manner [77, 79, 80]. Com-
paring the ternary complex to the KIX-c-Myb structure, the 
association of MLL stabilizes the residues with which it 
interacts, and a subtle change propagated to the other bind-
ing site creates additional interactions with c-Myb [80].

Some transcription factors interact with the two KIX 
hydrophobic grooves in a promiscuous manner. CBP/p300 
is the key coactivator of tumor suppressors FOXO3a and 
p53 [37, 38, 81, 82]. FOXO3a contains two TADs, called 
CR2C and CR3, which can each bind both KIX sites such 
that FOXO3a can associate with KIX in two different 
modes: CR2C bound to the c-Myb site and CR3 bound to 

the MLL site, or CR2C in the MLL site and CR3 in the 
c-Myb site (Fig. 2) [51, 83]. Both the c-Myb and MLL 
sites are very plastic, and the transactivation peptides from 
FOXO3a, CReB, c-Myb, and MLL bind to the KIX domain 
with different orientations, including opposite directions, 
apparently with minimal structural rearrangement of the 
KIX helices that form the binding site [51, 73, 80]. The 
structural plasticity of the KIX was further highlighted by 
the recent structure of KIX in complex with the first activa-
tion domain (AD1, also called p300/CBP and eTO target in 
e-proteins or PCeT) of the e-protein e2A. The PCeT pep-
tide binds the MLL site in an orientation that differs from 
the MLL peptide, and the G2 helix of KIX is rearranged 
[49]. The interaction between p53 and CBP/p300 exhibits a 
remarkable degree of promiscuity, as each of the two sub-
domains of its TAD (AD1 and AD2) can bind both KIX sites 
in each of two opposite orientations, potentially enabling 
eight distinct association modes [84]. This complexity pre-
cluded determination of the structures. Another example 
that highlights the plasticity is the binding of the retroviral 
human T cell leukemia virus type 1 (HTLv-1) protein HBZ 
to KIX. HTLv-1 causes adult T cell leukemia by deregulat-
ing transcription. The HBZ protein binds to the MLL-site  
of KIX, both impairing MLL-mediated and enhancing  
c-Myb-mediated transcriptional activation through the 
allosteric connection between the two sites. HBZ contains 
two helical binding sites that were proposed to form a hair-
pin and interact simultaneously with the wide and shallow 
hydrophobic groove of the MLL-binding site [85].

In addition to the examples mentioned above, the KIX 
domain of CBP/p300 is able to accommodate peptides from 
a variety of other proteins, including c-Jun [86], BRCA 1 
[87], e2A [88, 89], HTLv-1 Tax[90], and the sterol regu-
latory element binding protein (SReBP) [91] (Table 1). 
Sequence alignment of the KIX-interacting peptides from 
these proteins reveals a common “φXXφφ” motif, where φ 
is a hydrophobic residue, and X is an arbitrary residue. The 
“φXXφφ” sequence forms an amphipathic helix placing the 
hydrophobic residues in the binding site groove. Interest-
ingly, despite the conservation of the “φXXφφ” motif, the 
exact mode of binding of “φXXφφ” peptides is clearly not 
conserved. The “φXXφφ” motif plays a number of impor-
tant roles in many aspects of transcriptional regulation [92].

Transactivation domain interactions with the conserved 
zinc finger domains

There are four zinc finger motifs present in CBP/p300, 
including TAZ1, TAZ2, PHD, and ZZ. The structures of 
TAZ1, TAZ2, and ZZ have been determined [23, 93–95]. No 
structure of the CBP/p300 PHD domain is available; how-
ever, it is a C4HC3-type zinc finger motif [96], and structures 
of homologous domains from several other proteins have 
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been solved [97, 98]. Despite speculation that the PHD and 
ZZ domains may be involved in protein–protein interactions 
and ligand binding, the precise function of these domains 
remains elusive. In contrast, TAZ1 and TAZ2 have been well 
characterized as transactivation domains (Table 1). TAZ1 
and TAZ2 are each comprised of four amphipathic helices 
that support three HCCC-type zinc-binding sites [23, 93, 99].  
The structures of TAZ1 and TAZ2 are similar; however, 
the fourth helix is found in opposite orientations in the two 
domains (Fig. 2), a feature that was proposed to determine 
binding specificity for different activation domains [93].

The TADs of some activators are specific for TAZ1 or 
TAZ2, whereas some interact with both TAZ domains as 
well as other CBP/p300 TADs. For example, the highly pro-
miscuous TAD of p53 binds to TAZ1 and TAZ2 [50, 100], 
as well as both sites of KIX and NCBD [50]. The solution 
structure of p53 AD1 in complex with TAZ2 shows that 
AD1 forms a helical structure and contacts TAZ2 through 
an extended hydrophobic surface with some electrostatic 
contributions [101]. Phosphorylation of S15 or T18 of p53 
increases its affinity for TAZ2, through a combination of 
electrostatic interactions with nearby basic residues in 
TAZ2, and modulating the extent of hydrophobic interac-
tions. A recent study suggests that both AD1 and AD2 of 
p53 bind TAZ2 at two coupled binding sites [102, 103]. 
A fusion peptide encompassing both TADs of FOXO3a 
(CR2C-CR3) also binds to both TAZ1 and TAZ2 in addi-
tion to KIX, but the detailed binding mode is unclear [51]. 
These results further reveal the complexity of the interaction 
between the IDRs of transcription factors and the TADs of 
CBP/p300.

In contrast to p53 and FOXO3a, the TADs of some tran-
scription factors do exhibit specificity for TAZ1 or TAZ2. 
The TAZ1 domain recognizes the carboxyl-terminal acti-
vation domain (CAD) of HIF-1α, which functions in the 
maintenance of cellular oxygen homeostasis by inducing 
transcription of adaptive genes under hypoxic conditions 
[99, 104]. CAD, which is intrinsically disordered in isola-
tion, encircles the TAZ1 domain with regions of extended 
conformation as well as three short binding-induced helices. 
A ‘hypoxic switch’ residue, N803, which is not hydroxy-
lated under hypoxic conditions, is intimately involved in 
the interface. Under normal conditions, hydroxylation of 
this asparagine inhibits CBP/p300 binding and transactiva-
tion. The affinity of the HIF-1α CAD-TAZ1 interaction is 
very high, with a Kd of 7 nM [104]. CBP/p300-interacting 
transactivator 2 (CITeD2) negatively regulates the activity 
of HIF-1α by competing for CBP/p300 binding [105–107].  
CITeD2 wraps around TAZ1 in a manner similar to HIF-1α, 
with a partially overlapping binding site, although it does 
not occupy the entire HIF-1α binding site. The Kd of 
CITeD2 binding to TAZ1 is about 13 nM, comparable to 
that of HIF-1α [106].

The adenoviral protein e1A interacts with CBP/p300 
primarily through TAZ2 to activate viral gene transcrip-
tion [108], although interactions with the KIX and NCBD 
domains have also been reported [109, 110]. The unstruc-
tured CR1 region of e1A becomes partially helical upon 
binding the TAZ2 domain of CBP/p300 through extensive 
hydrophobic interactions [111]. The binding site of e1A 
overlaps that of the p53 TAD, and e1A can effectively 
displace p53. Recruitment of CBP/p300 by STAT proteins 
provides an excellent illustration of selectivity of the TAZ1 
and TAZ2 domains. CBP TAZ1 and TAZ2 specifically  
recognize the TADs of STAT2 and STAT1, respectively, with 
over 100-fold selectivity. The TAD of STAT2 binds TAZ1 
with an extended contact surface, similar to HIF-1α and 
CITeD2, while STAT1 TAD interacts with TAZ2 through 
a hydrophobic surface [112]. Differences in helix packing 
between TAZ1 and TAZ2, and variations in the hydrophobic 
surfaces may determine this target selectivity.

Myocyte enhancer factor 2 (MeF2) is a transcription 
factor that controls muscle cell development, dopaminer-
gic neuronal differentiation, and calcium-induced T cell 
apoptosis. MeF2 interacts with corepressors in the rest-
ing state, but, upon activation by Ca2+, MeF2 dissociates 
from corepressors and engages coactivators including CBP/
p300 [113]. The binding sites that mediate the MeF2–p300 
interaction were mapped directly to the DNA-binding  
MADS-box/MeF2 domain of MeF2 and the TAZ2 domain 
of CBP/p300 [114–116]. Structural studies of this interac-
tion employed an extended TAZ2 domain construct with 
an additional C-terminal helix (α4), relative to the con-
struct used in previous NMR studies. Surprisingly, the 
crystal structure of a MeF2:TAZ2 complex in the presence 
of a double-stranded oligonucleotide containing a MeF2- 
binding element revealed three DNA-bound MeF2 dimers 
interacting simultaneously with three distinct surfaces of 
TAZ2 [117] (Table 1). The additional α4 helix comprises 
one of the MeF2-binding sites, whereas the other two bind-
ing sites partially overlap the p53- and STAT1-binding sites 
[117]. In contrast to the binding-coupled folding of intrinsi-
cally disordered TADs upon interaction with TAZ2, as dis-
cussed above, MeF2 binds largely by rigid-body docking of 
folded domains with no substantial change in the structure 
of TAZ2 or the MeF2 dimers. However, unlike the static 
picture presented by the crystal structure, these interactions 
are very dynamic, and, in solution, the complex exists in 
equilibrium between several species with different stoichio-
metries [117].

Transactivation domain interactions with the C-terminal 
NCBD domain

The NCBD domain within the C-terminal Q-rich region of 
CBP/p300 lacks well-defined structure in isolation; however, 
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upon interacting with the structured TAD of IRF-3, it adopts 
a well-defined structure [26, 118]. Interestingly, interactions 
between NCBD and the intrinsically disordered TADs of 
other transcription factors involve the synergistic folding 
and binding of two intrinsically disordered polypeptides. 
NCBD binds the TAD of p53, largely through hydrophobic 
interactions, and concomitantly NCBD adopts a three-helix 
bundle structure. AD1 and AD2 of p53 form helices that 
dock to adjacent patches on NCBD, whereas the loop con-
necting these helices is flexible and does not contact NCBD 
(Fig. 2) [119]. Similar results have also been reported for 
the complex of NCBD and activator of thyroid and retinoic 
acid receptors (ACTR), which is a transcription coactivator 
[27, 120, 121]. when in complex with ACTR, NCBD forms 
a structure similar to that seen in the NCBD–p53 complex, 
except that the length and orientation of the last helix differs 
[27]; however, these two structures differ substantially from 
the IRF-bound form of NCBD [118]. Biophysical charac-
terization of ligand-free NCBD indicates a molten globule 
state with a small cooperatively folded core, which includes 
a transient conformer that resembles the ACTR and p53-
bound states (Fig. 2) [122], thus the binding of ACTR and 
p53 to NCBD involve conformational selection [123].

Interactions between CBP/p300 LXXLL motifs and 
nuclear receptors

CBP/p300, as well as the p160 proteins NCoA-1, 2, and 3, 
are coactivators that mediate ligand-dependent gene expres-
sion through interactions with the ligand-binding domains 
(LBDs) of several nuclear receptors. Interaction of a ligand 
with its binding pocket in the LBD induces a structural rear-
rangement exposing a coactivator-binding site that recog-
nizes LXXLL motifs in the coactivator [124, 125]. CBP/
p300 contains three LXXLL motifs (Fig. 2), two of which 
mediate interactions with RXR [52], AR [53], and eR [54]. 
The polar residue preceding the LXXLL motif is important 
for the binding affinity and specificity [92].

Promiscuous multivalent interactions enable synergistic/
antagonistic effects

IDRs are abundant in proteins involved in transcription, 
translation, and signal transduction (Fig. 3a). IDRs lack 
rigid three-dimensional structure, but are able to undergo 
binding-coupled folding and adopt multiple structures, 
which enable them to interact with a variety of binding 
partners [126, 127]. Many TADs of transcription factors are 
intrinsically disordered, and are capable of binding multiple 
sites on CBP/p300, as well as other transcription factors. As 
described above, p53 interacts with KIX, TAZ1, TAZ2, and 
NCBD [50, 128], while FOXO3a interacts with KIX, TAZ1, 
and TAZ2 [51]. erythroid Kruppel-like factor (eKLF) also 

interacts with all four CBP/p300 activation domains [129], 
but these complexes await structural characterization. Fur-
thermore, multiple binding interfaces have been identified 
with individual TADs of CBP/p300. For instance, FOXO3a 
occupies two sites within the KIX domain [51], and MeF2 
dimer interacts with three distinct surfaces of the TAZ2 
domain [117]. The promiscuous multivalent binding may 
contribute to the synergy of coactivator recruitment by 
groups of transcription factors that regulate similar biologi-
cal processes. For example, FOXO3a and p53, which share 
similar functions and many common target genes, have been 
shown to interact with each other [130, 131], and proposed 
to assemble a transcriptional regulatory complex [132]. 
Thus, p53 and FOXO3a may simultaneously interact with 
multiple sites of CBP/p300, and synergistically stabilize 
the transcription factor–coactivator complex. Some tran-
scription factors dimerize upon activation. For example, a 
STAT1/STAT2 heterodimer is able to associate with CBP/
p300 through both the TAZ2 and TAZ1 sites, presumably 
enhancing the transcription efficiency [112, 133]. FOXO3a 
and Smad also form a heterodimer on the p21 gene pro-
moter, and both are required for p21 gene transcription 
[134]. we speculate that the heterodimerization of activa-
tors enables multivalent binding, which improves the effi-
ciency of CBP/p300 recruitment and therefore transcription 
of target genes. Recent studies found that more than half of 
human gene promoters contain conserved multiple binding 
sites for the same transcription factor in the ~100–1,000-
base cis-regulatory modules, called homotypic clusters of 
transcription factor binding sites (HCTs). Transcription 
factors are enriched in these HCTs, and colocalization of 
the enhancer-associated CBP/p300 was observed at HCTs 
[135]. Thus, we propose a model that HCTs would promote 
the accumulation of transcription factors and the forma-
tion of multivalent interactions between the TADs of bound 
transcription factors and CBP/p300. The structure of three 
DNA-bound MeF2 dimers in complex with TAZ2 [117] 
provides insight into the assembly of such a multivalent 
complex, which could be extended by involvement of other 
CBP/p300 TADs. Moreover, the tandem TADs located in 
extended IDRs of many transcription factors, including 
p53, FOXO3a, and c-Myc, would further contribute to the  
multivalent association (Fig. 3). Individual TADs inter-
act weakly with CBP/p300; however, the product of mul-
tiple weak binding events would stabilize the interaction, 
promoting coactivator recruitment and initiation of gene 
transcription. IDRs in both CBP/p300 and transcriptional 
activators may adopt different conformations to accommo-
date local chromatin structure and the variable distance to 
the transcription start site, allowing CBP/p300 to be posi-
tioned correctly to promote transcription initiation. Fur-
thermore, multivalent binding may provide a mechanism 
by which some transcription factors modulate the effect of 
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other transcription factors. For example, FOXO3a is able 
to inhibit HIF-1α transactivation through forming a ternary 
complex with CBP/p300 and HIF-1α, as well as by activat-
ing transcription of its inhibitor CITeD2 [136, 137]. The 
mechanism is unknown, but formation of a ternary complex 
is essential. In addition to TAZ1, which binds HIF-1α very 
tightly, FOXO3a also binds to the KIX and TAZ2 domains, 
which may enable the formation of the ternary complex.

Regulation of CBP/p300-transcription factor interaction by 
PTMs

Transcription factors recruit the coactivator CBP/p300 to 
activate transcription of their target genes. The intrinsically 
disordered TADs of transcription factors are readily acces-
sible to PTM enzymes, and, in response to various stimuli, 
the interactions between CBP/p300 and transcription factors 

Fig. 3  Promiscuous multivalent model of CBP/p300 recruitment. a 
Many transcription factors contain tandem TADs located in intrinsi-
cally disordered regions (IDRs). DNA-binding domains are shown 
as blue boxes, other structured domains are indicated as cyan boxes, 
and TADs are labeled and colored purple. Uncoloured regions and 
most TADs are predicted IDRs, and the percentage of each transcrip-
tion factor that is comprised of IDRs is indicated. b Multivalent bind-
ing model of CBP/p300 recruitment by transcription factors. In the 
promoter and enhancer regions, there are multiple transcription fac-
tor binding sites (TFBSs) for one or more transcription factors. each 

TAD interacts weakly with CBP/p300; however, the product of mul-
tiple weak binding events would stabilize the interaction, promoting 
recruitment and initiation of gene transcription. Some transcription 
factors function as homo- or hetero-dimers, of which each monomer 
unit may interact with different TADs of CBP/p300 (bottom), recruit-
ing coactivator CBP/p300 more efficiently through multivalent inter-
actions and avoiding competition for one binding site. The IDRs pre-
sent in CBP/p300 as well as the transcription factors may facilitate 
recruitment of CBP/p300 in a productive orientation and position, 
adapting to various chromatin structures
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are extensively regulated by modifications of both classes of 
proteins [138]. These PTMs both positively and negatively 
regulate the association of transcription factors with CBP/
p300 (Table 1). Phosphorylation on S133 of the KID domain 
of CReB  increases the binding affinity to CBP/p300 [73], 
whereas  phosphorylation of S142 by calcium- and calmo-
dulin-dependent kinase II (CaMKII) [139], and S111 and 
S121 by ataxia-telangiectasia mutated (ATM) [140, 141] 
inhibit CReB binding [142]. The TAD of p53 also contains 
several phosphorylatable Ser residues, and their phospho-
rylation increases the binding of p53 to all four TADs of 
CBP/p300 in a graded manner [128, 143, 144]. Likewise, 
AMPK phosphorylation of S626 of FOXO3a also enhances 
the binding affinity of FOXO3a CR3 to the KIX and TAZ1/2 
domains [51]. Asparagine hydroxylation and S-nitrosylation 
of HIF-1α CAD decreases CBP/p300 binding, whereas 
phosphorylation does not affect CBP/p300 binding, but may 
modulate HIF-1α transcriptional activity through interac-
tions with other proteins [145].

Phosphorylation of CBP/p300 itself is another mecha-
nism that modulates association with transcription factors. 
Phosphorylation of S436 of CBP (not conserved in p300) 
inhibits CReB–CBP interaction in hepatic cells [146, 147], 
even though this site is close to the C-terminus of TAZ1 
and >100 residues away from the KIX domain. The mecha-
nism by which S436 phosphorylation impairs CReB bind-
ing to KIX is unknown, but it is transcription factor-specific, 
as it does not affect FOXO binding [147]. Conversely, S436 
phosphorylation is required for CBP/p300 binding to Pit-1 
and AP-1 transcription factors, where it may enhance their 
interactions with the TAZ1 domain [148]. CBP/p300 is also 
modified by methylation. The coactivator-associated argi-
nine methyltransferase 1 (CARM1) methylates R754 in the 
KIX domain of p300, creating a site that is recognized by 
BRCT domains of BRCA1, and this interaction is essential 
for the expression of the critical cell cycle and prolifera-
tion inhibitor p21 [87]. Overall, these PTMs of both CBP/
p300 and transcription factors function to fine tune gene 
transcription.

The intrinsic acetyltransferase activity of CBP/p300

Histone modification and chromatin remodeling

The N-terminal tails of histone proteins are subject to many 
PTMs, including phosphorylation [149], methylation [150], 
ubiquitination [151], sumoylation [152], and acetylation 
[153]. Combinations of these modifications, defined as 
the “histone code”, contribute to the alteration of chroma-
tin structure, which regulates the expression level of genes 
[154]. Factors that covalently modify histones are defined 
as histone code “writers” [155]. CBP/p300 contains a HAT 

domain that acetylates nucleosomal histones in the proxim-
ity of the promoter to which CBP/p300 is recruited [13, 14]. 
whether the acetyltransferase activity of CBP/p300 or its 
adapter function plays the major role in gene transcription 
is promoter–activator-specific. Histone acetylation relaxes 
the chromatin structure and makes chromosomal DNA more 
accessible [156]. It was shown in vitro that p300 acetylates 
all acetylation sites of histones H2A and H2B, and preferen-
tially acetylates K14 and K18 of H3 and K5 and K8 of H4 
[157]. Recent studies showed that CBP/p300 also acetylates 
K56 of H3, which has a critical role in DNA packing rather 
than chromatin relaxation [158], and deletion of CBP/p300 
specifically and dramatically reduces acetylation on H3 K18 
and K27 [64]. The structure of the HAT domain of p300 
suggests that it applies a ‘hit-and-run’ (Theorell–Chance) 
catalytic mechanism in histone acetylation, in which, after 
binding of acetyl-CoA, the lysyl residue of the substrate 
peptide snakes through the p300 tunnel and reacts with the 
acetyl group. This mechanism is distinct from other charac-
terized HATs, which explains the specificity and selectivity 
of the HAT activity of CBP/p300 (Fig. 2) [159, 160].

The viral protein e1A and the endogenous protein e1A-
like inhibitor of differentiation 1 (eID-1) alter gene expres-
sion in part by inhibiting p300-dependent transcription. 
e1A is a multifunctional protein with an N-terminal CR1 
region that interacts with TAZ2 as described above, as well 
as a C-terminal region that directly interacts with the HAT 
domain and inhibits HAT activity of both CBP/p300 and 
PCAF [161]. CR1 is not required for HAT inhibition, but 
likely facilitates the interaction by tethering e1A to CBP/
p300. eID-1 is enriched in muscle tissue and can inhibit the 
expression of muscle-specific genes through tissue-specific 
transcription factors including MyoD and MeF2. eID-1 
binding to CBP/p300 was mapped to the CH3 region (which 
includes TAZ2); however, it has been demonstrated that, 
like e1A, eID-1 regulates transcriptional activity largely 
by inhibiting CBP/p300 HAT activity [162, 163]. Suppres-
sion of CBP/p300 by eID-1 is associated with inhibition of  
myogenesis as well as pathogenesis of Alzheimer’s disease 
[162, 164], and thus this protein–protein interaction may be 
an attractive target for certain pathological conditions.

The Bromo and PHD domains adjacent to the HAT 
domain are dispensable for histone acetylation, but were 
found to bind acetylated nucleosomes and transcription 
factors [28, 63, 165], and are thus considered histone code 
“readers” that play roles in epigenetic regulation (Fig. 2).

Acetylation of non-histone transcription factors  
by CBP/p300

The HAT activity of CBP/p300 also acetylates non-histone 
substrates, including transcription factors, which can posi-
tively or negatively modulate their activity through diverse 
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mechanisms. The C-terminal tail of p53 possesses non-
specific DNA-binding activity, which interferes with its 
sequence-specific DNA-binding. Acetylation of the C-ter-
minus by CBP/p300 reduces the non-specific DNA-binding 
of p53, and in turn increases its sequence-specific DNA-
binding activity, thus forming a positive-feedback loop 
[166]. Similarly, acetylation of the MeF2 TAD by CBP/
p300 enhances its DNA-binding and transactivation activ-
ity [167]. Smad-dependent transcription is also promoted 
by p300-mediated acetylation of Smad proteins; however, 
the mechanism involves facilitating their nuclear accumula-
tion [168]. Transactivation activity of CReB is enhanced by 
CBP-mediated acetylation of sites within the CReB TAD, 
which presumably increases its binding to the KIX domain 
[169]. CBP/p300 acetylates the transactivation domain 
AD1 of e2A protein, and similar to CReB, this enhances 
the interaction between AD1 and KIX [170]. On the other 
hand, CBP/p300 acetylates the DNA-binding FH domain of 
FOXO3a and FOXO1, which impairs DNA-binding, thus 
forming a negative-feedback loop [171, 172]. CBP/p300 
acetylation inhibits transactivation by the transcription fac-
tor TCF by disrupting its interaction with other co-factors 
[173].

The role of CBP/p300 in cancer and other human 
diseases

CBP/p300 interacts with a large number of transcription 
factors and is involved in a wide array of cellular activities, 
such as DNA repair, cell growth, differentiation, and apop-
tosis [16]. Thus, mutations of the CBP and p300 genes and 
dys-regulation of the proteins have been implicated in many 
human diseases, including cancer. Germline mutations 
(point mutations, translocations or deletions) of the CBP 
gene (but rarely p300) result in Rubinstein–Taybi syndrome, 
which is characterized by broad thumbs and cranio-facial 
and cardiac abnormalities, as well as mental retardation. 
Importantly, the patients also have increased predisposition 
to childhood malignancies [174–176]. CBP+/– mice have 
increased incidence of hematologic malignancies, which 
support a tumor suppressor function for CBP [177]. Actu-
ally, CBP/p300 is essential for hematopoietic homeostasis. 
The chimeric, oncogenic e2A-PBX1a and e2A-PBX1b 
proteins, present in ~5 % of acute lymphoblastic leukemia 
(ALL), interact with the KIX domain of CBP/p300, and this 
interaction is associated with accelerated cell proliferation 
[88]. In vivo studies of p300 showed that deletion of the 
KIX or CH1 domain causes profound and pervasive defects 
in hematopoiesis, whereas loss of most other domains has a 
minor effect [178]. Mutations in some transcription factors 
that interact with CBP/p300 are also associated with tumo-
rigenesis. For example, recent high-throughput sequencing 

studies of non-Hodgkin lymphomas identified several muta-
tions predicted to impair the activity of the HAT domains of 
CBP and p300, and further revealed that MeF2B is among 
the most frequently mutated genes in non-Hodgkin lympho-
mas [179]. Recurrent mutations in MeF2 were identified at 
the CBP/p300-binding interface and the DNA-binding site, 
presumably impairing recruitment of CBP/p300 to MeF2 
target genes [179].

Chromosomal translocations directly involving the CBP 
or p300 genes are also associated with leukemia/lymphoma. 
Monocytic leukemia zinc-finger protein (MOZ) becomes 
fused to the amino-terminus of CBP or, more rarely, to 
p300 [in the t(8, 16) or t(8, 22) translocations, respec-
tively] [180, 181], which are associated with acute myeloid  
leukemia (AML). MLL also forms fusion proteins with 
CBP [t(11, 16)] and p300 [t(11,22)] through chromosomal 
translocation [182–185], and these fusion proteins contrib-
ute to AML through gain-of-function. Both the Bromo and 
HAT domains are present in the chimeric proteins, and are 
necessary for immortalizing myeloid progenitors [186].

The findings discussed above suggest CBP and p300 
can act as tumor suppressors, and indeed genetic alteration 
of these two genes results in carcinogenesis. CBP/p300 is 
important for the transactivation function of p53, BRCA1, 
and FOXO3a, which are all critical tumor suppressors; how-
ever, as a coactivator of c-Myc, c-Myb, and AR, CBP/p300 
can also promote cell proliferation and cancer development 
under specific conditions. In fact, by activating AR-depend-
ent transcription, CBP/p300 promotes prostate cancer pro-
gression, which can be blocked by siRNA against p300 
[187, 188]. CBP/p300 also promotes cancer progression in 
colon cancer cell lines with microsatellite instability [189]. 
In some cancer treatments, CBP/p300 plays a role in the 
development of drug resistance: p300 mediates resistance 
to doxorubicin in bladder cancer [190], and the interaction 
between CBP and β-catenin is associated with breast can-
cer and acute lymphoblastic leukemia (ALL) drug resist-
ance [191–193]. In addition to cancer, the interplay of CBP/
p300 with different transcription factors is involved in HIv 
(activation of HIv gene expression through interaction with 
HIv-1 Tat) [194], Alzheimer’s disease (interaction between 
CReB and CBP/p300 is disrupted by amyloid-β) [195], dia-
betes [impairment of interactions between pancreas duode-
num homeobox (PDX-1) and p300] [196], and heart disease 
(essential role in embryonic heart development, but high 
expression levels of p300 drive myocardial hypertrophy 
through MeF2) [197, 198].

CBP/p300 as a drug target

Given the importance of deregulation of CBP/p300 in can-
cer and other human diseases, and its role in cooperating 
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with oncogenic transcription factors, efforts have been 
made in targeting CBP/p300 with small molecule inhibi-
tors [199]. The availability of an extensive body of struc-
tural information on the TADs, Bromo domain, and HAT 
domain, as well as complexes formed by CBP/p300 and its 
binding partners, provides a good basis for inhibitor design. 
Some compounds have been designed to modulate the his-
tone modification function of CBP/p300 (Fig. 4). Curcumin 

(diferuloylmethane), a natural product from the spice 
tumeric, is a specific inhibitor of CBP/p300 HAT activity, 
and represses the CBP/p300 HAT-dependent transcriptional 
activation from chromatin [200]. Curcumin represses acet-
ylation of the HIv-Tat protein and HIv replication, but it 
also represses p53 acetylation, potentially inactivating this 
key tumor suppressor [200], and appears to have multiple, 
unrelated protein targets [201]. LTK-14 is a p300-selective 

Fig. 4  Compounds that target CBP/p300. Common names of compounds are indicated along with their chemical structures, the CBP/p300 
domain targeted, and reported Kd or IC50 values
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noncompetitive inhibitor for both acetyl-CoA and histone 
that inhibits the HAT activity of p300 but not PCAF and 
shows similar effects as curcumin [202, 203]. The recently 
developed compound C646 targets the CBP/p300 HAT 
domain, and induces apoptosis in prostate cancer cells, sug-
gesting that CBP/p300 HAT inhibitors could serve as new 
anti-tumor therapeutics [204].

Bromo domains, which recognize acetylated peptide sub-
strates, are found in several proteins and are emerging drug 
targets for many diseases (Fig. 4) [205, 206]. The CBP/p300 
Bromo domain is important for p300 to maintain histone 
acetylation and effective gene transcription, and plays a key 
role in the cell transformation by the MLL-CBP/p300 fusion 
protein in AML [186, 207]. Ischemin, a small molecule that 
binds the Bromo domain of CBP, prevents apoptosis in car-
diomyocytes with wild-type p53, and thus may protect nor-
mal tissues from apoptosis when used in combination with 
chemo- and radiation-therapies [208]. The importance of the 
Bromo domain to the transforming activity of MLL-CBP/
p300 suggests that ischemin may be beneficial for acute 
leukemia treatment; however, this has not been examined. 
The 3, 5-dimethylisoxazole derivatives have been reported 
to bind to the CBP/p300 Bromo domain, but they also bind 
to the BeT Bromo domain-containing proteins [209]. Thus, 
the selectivity of the inhibitor is crucial for targeting the 
CBP/p300 Bromo domain.

CBP/p300 is an important coactivator for many onco-
genes, but its role as a coactivator for some tumor suppres-
sors should be considered in any strategy to inhibit this 
important protein. Because tumor suppressor genes have 
been mutated or inactivated in many cancer cells, blocking 
the interactions between CBP/p300 and oncogenic transcrip-
tion factors has been considered as a potential strategy for 
tumor treatment, and thus efforts have been made towards 
discovery of small molecule inhibitors of the CBP/p300 
TADs (Fig. 4). The natural product chetomin was identified 
in a high-throughput screen as a molecule that disrupts the 
interaction between HIF-1α and the TAZ1 domain of CBP/
p300, thus inhibiting hypoxia-inducible transcription and 
reducing tumor growth in vitro [210]. Chetomin inspired 
the design of synthetic dimeric epidithiodiketopiperazine 
molecules, which showed better disruption of HIF-1α bind-
ing with an IC50 of 1.5 ± 0.2 μM and lower toxicity than 
chetomin [211]. The KIX domain has also been an attractive 
target for inhibitor discovery. Using NMR spectroscopy, a 
small molecule (Naphthol AS-e phosphate or KG-501) was 
identified that interacts with both TAD-binding sites of KIX 
(i.e., the c-Myb and MLL sites), and inhibits CReB-binding 
[212]. Further characterization revealed that the compound 
is activated by dephosphorylation, and that Naphthol AS-e 
is a more effective KIX inhibitor [213]. Amphipathic small 
molecules that mimic the transcription factor TADs (iTAD) 
have been developed and shown to specifically bind the 

MLL-site of KIX and disrupt MLL-binding [214]. Screen-
ing of a library of natural products isolated from marine 
organisms identified several compounds capable of releas-
ing the MLL TAD from a pre-assembled complex with 
the KIX domain. The lichen-derived depside sekikaic acid 
competes with MLL for binding to its site (IC50 of 34 μM), 
but further inhibits binding of KID at the c-Myb site (IC50 
of 64 μM), possibly through the allosteric communication 
between the two sites, and was shown to down-regulate  
c-Jun-mediated gene expression in a cell-based assay [215]. 
These KIX inhibitors await testing in animal models. In 
addition to those discussed above, there are other com-
pounds identified through functional screening, including 
ICG-001 [191] and Arylsulfonamide KCN1 [216] that are 
able to interfere with interactions between CBP/p300 and 
transcription factors, but how these molecules interact with 
CBP/p300 is unknown.

Summary and conclusions

In the past 15 years, exciting findings have been made through 
structural and functional studies of the transcriptional coacti-
vator CBP/p300, which together demonstrate that CBP/p300 
is very versatile and functions in many physiological and 
pathological processes. CBP/p300 interacts with transcrip-
tion factors, many of which possess IDRs and engage in pro-
miscuous multivalent binding with CBP/p300 (Table 1). This 
is essential in stabilizing a promoter-anchored transcriptional 
complex and promoting productive coactivator recruitment 
(Fig. 1). In the HCTs, IDRs are of particular importance as 
they can facilitate productive positioning of CBP/p300 with 
respect to a variable chromatin structure depending on epige-
netic marks and gene-specific promoter structures. Another 
layer of transcriptional regulation involves post-translational 
modification of CBP/p300. Moreover, CBP/p300 itself can 
modify other transcription factors such as p53 acetylation, 
together generating a wide spectrum of transcriptional/epige-
netic regulatory mechanisms. These are in parallel with cel-
lular observations in which CBP/p300 was found to behave 
differently according to developmental stages and cell types. 
Much deeper understanding of both molecular and cellular 
mechanisms and actions of CBP/p300-dependent transcrip-
tional regulation requires (1) systematic ways to visualize 
the spatiotemporal expression pattern of CBP/p300 in differ-
ent tissues and cell types, and (2) global approaches to char-
acterize the ratio of CBP/p300 that associates with different 
transcription factors in all normal and cancer cells. These 
cellular and proteomic approaches, combined with efforts 
in CBP/p300-targeted inhibitor screening, may yield a suc-
cessful outcome for anti-cancer drug development. Currently 
available CBP/p300 inhibitors suffer from lack of specific-
ity, and hence the advancement of structural understanding 
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of CBP/p300 interactions with various targets, combined 
with chemical and systems biology approaches, is absolutely 
needed for the development of better therapeutics in the per-
sonalized medicine era.
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