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Does stromal interaction molecule-1 have five senses?
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A B S T R A C T

A single calcium (Ca2+) binding site within the canonical EF-hand loop was thought to govern the stromal
interaction molecule-1 (STIM1) structural changes that lead to activation of Orai1 Ca2+ channels. Recent work
by Gudlur et al., published in Nat Commun [9(1):4536], suggests that the STIM1 endoplasmic reticulum (ER)
luminal domain has ∼5 additional Ca2+ binding sites, which underlie a surprising new proposal for Ca2+

sensing.

Store operated calcium entry (SOCE) is the cellular process whereby
endoplasmic reticulum (ER) luminal calcium (Ca2+) depletion causes
Ca2+ channels on the plasma membrane (PM) to open, elevating cy-
tosolic Ca2+ and effecting myriad signaling pathways. Stromal inter-
action molecule-1 (STIM1) functions as the ER Ca2+ sensor, and Orai1
makes up the PM Ca2+ channel; together, these proteins principally
mediate SOCE in most cell types [1,2]. Within its ER lumen-oriented
region, STIM1 contains canonical and non-canonical EF-hand motifs
that interact and form a hydrophobic pocket when Ca2+ is coordinated
in the canonical EF-hand loop, analogous to hundreds of other EF-hand
domains [3,4]. This EF-hand pocket closely associates with the adjacent
sterile α-motif (SAM) domain of STIM1, forming a compact globular
structure in the presence of Ca2+ [5] (Fig. 1A). Together, the EF-hand
and SAM domains of STIM1 are termed ‘EFSAM’. The cytosol-oriented
region of STIM1 contains a series of conserved coiled-coils. In SOCE, ER
luminal Ca2+ depletion causes structural changes in STIM1 EFSAM,
which propagate to the cytosolic coiled-coils, ultimately promoting
direct coupling to Orai1 and opening of the Ca2+ channels [1,2].

In isolation, Ca2+-loaded EFSAM exists as a monomer, and high-
resolution structures have been elucidated in this stable state [5,6]. In
contrast, Ca2+-depleted EFSAM is destabilized, partially unfolds, di-
merizes and oligomerizes, biophysical changes previously suggested to
trigger the cytosolic structural rearrangements that enable the activa-
tion of Orai1 channels [7,8]. Biochemical analyses of the isolated
EFSAM and canonical EF-hand motif suggest a single Ca2+ binding site
with a dissociation constant (Kd) of ∼200–500 μM [7–9]. Given that
the STIM1 coiled-coils are dimeric in the quiescent state [1], Gudlur
et al. [10], cleverly designed a soluble EFSAM construct fused to the
Thermus thermophilus GroP-like gene E (GrpE) protein to study the Ca2+

sensing properties of EFSAM when constricted in dimeric GrpE space.

Gudlur et al., found that Ca2+ depletion increased the EFSAM-
EFSAM FRET within artificial EFSAM-GrpE dimers. However, the
midpoint of the transition to lower FRET was found to occur at ∼1–10
μM of Ca2+, much lesser than the estimated Ca2+ binding affinity of the
canonical EF-hand [7–9] and the midpoint for STIM1 activation pre-
viously characterized in cells [11,12]. Remarkably, isothermal titration
calorimetry (ITC) and D4 cameleon fluorescence Ca2+ sensor compe-
tition experiments suggested ∼5-6 Ca2+ binding sites exist per EFSAM
monomer. Interestingly, disruption of Ca2+ coordination within the
canonical EF-hand loop via the D76A mutation abrogated all Ca2+

binding sites.
To study the structural determinants of the multiple apparent Ca2+

binding sites, three clusters of negative charge-neutralizing EFSAM
mutations were designed and incorporated into full-length STIM1. A 4-
residue mutation cluster at the N-terminal region and a 6-residue mu-
tation cluster on the SAM domain did not affect the ability of full-length
STIM1 to form ER Ca2+ depletion-dependent puncta. On the other
hand, an 11-residue mutation cluster introduced in the EF-hand domain
(i.e. D77N/D82N/E86Q/D89N/E90Q/E94Q/D100N/E111Q/D112N/
E118Q/D119N, where underlined residues are located in the canonical
EF-hand loop) inhibited the ability of STIM1 to form puncta.
Subsequent ITC experiments using EFSAM-GrpE containing these EF-
hand domain mutations showed only a single Ca2+ binding site.
However, when Gudlur et al., mutated only a subset of these residues
(i.e. E94Q/D100N/E111Q/D112 N/E118Q/D119N), a fraction of full-
length STIM1 molecules were found to constitutively form puncta, and
the remaining fraction showed activation after partial ER Ca2+ store
depletion. They attributed this phenotype to weaker Ca2+ binding af-
finity based on ITC data acquired on EFSAM-GrpE containing this
subset of EF-hand domain mutations still suggesting∼5-6 binding sites.
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Interestingly, far-UV circular dichroism (CD) spectra of EFSAM-
GrpE showed only a minor Ca2+-induced (i.e. 1 or 10mM CaCl2) in-
crease in apparent α-helicity, in part due to the ∼50% unchanging
contribution by GrpE, while spectra of EFSAM-GrpE containing the full
set of EF-hand domain or D76A mutations were insensitive to Ca2+.
However, minor Ca2+-induced changes in secondary structure were
also supported by hydrogen-deuterium amide exchange experiments
performed in the absence and presence of 30 μM Ca2+, revealing highly
protected backbone amides. After engineering Cys residues into buried
EFSAM positions, Gudlur et al., also used thiol-specific biotinylation of
full length STIM1 embedded in isolated ER membranes followed by
pull-down experiments to show similar Cys accessibilities in the pre-
sence or absence of Ca2+. Nevertheless, these EFSAM-GrpE and full-
length STIM1 data must be interpreted with caution since the bio-
chemical assay buffers contained 5% glycerol, a known EFSAM struc-
ture stabilizing agent [8], and thiol-mediated biotinylation is influ-
enced by a number of factors besides folding, complicating
interpretations on conformation in intact cells.

Collectively, the work by Gudlur et al., advocates that i) EFSAM
binds ∼5-6 Ca2+ ions, dependent on Ca2+ coordination by the cano-
nical EF-hand loop; ii) the binding of at least one site occurs with a
midpoint of dissociation of ∼1–10 μM; iii) large scale unfolding of the
EFSAM domain is not required to induce an active STIM1 conformation;
iv) most of the Ca2+-depletion-dependent STIM1-STIM1 FRET observed
in cells can be accounted for by EFSAM-EFSAM dimerization. These
data are integrated into two models of Ca2+ sensing by the authors. In
the first model, they suggest that, despite the ∼1–10 μM Ca2+ sensi-
tivity detected using EFSAM-GrpE, the midpoint of Ca2+ dissociation at
all sites is ∼200 μM. In this scenario, the Ca2+ binding to the EFSAM
surface stabilizes the EF-hand loop binding, and Ca2+ dissociation from
the surface sites is required to activate STIM1. In the second model,
they suggest that Ca2+ binds to the EF-hand loop with ∼1–10 μM af-
finity, but additional Ca2+ binding at ∼5–6 peripheral sites are re-
quired to stabilize the full-length molecule in an inactive conformation,
and it is the binding and unbinding at the peripheral sites that controls
the conformational switch.

Neither scenario involves large scale EFSAM unfolding, a supposi-
tion reinforced by past studies showing isolated EFSAM retains struc-
ture in the Ca2+-depleted state [8] and highly structured EFSAM chi-
meras can activate STIM1 [6]. From an EF-hand perspective, both
scenarios integrate ∼5 Ca2+ binding sites peripheral to canonical Ca2+

coordination in the EF-hand loop as the crucial sensing event. There are
at least 865 members in the EF-hand superfamily, and to the best of our
knowledge, there is no analogous EF-hand-mediated Ca2+ sensing
mechanism reported to date that similarly links peripheral Ca2+

binding [3,4]. Thus, several prudent questions arise regarding the new
Ca2+ sensing mechanism proposed. Could GrpE-mediated constitutive
dimerization obscure conformational changes that occur in EFSAM?
This question is particularly imperative given that GrpE normally

participates in preventing aggregation of denatured proteins [13].
Further, when structurally coupled, two independent EF-hand pairs
such as the N-lobe or C-lobe of calmodulin mutually enhance the Ca2+

binding affinity within each lobe [3]. How many Ca2+ binding sites
could be quantitatively derived if cooperativity induced by EFSAM di-
merization is considered? How could mutations designed to disrupt
peripheral Ca2+ binding in the same EFSAM region cause both loss-of-
function and gain-of-function phenotypes in STIM1? What is the phy-
siological relevance of the ∼10 μM Ca2+ sensitivity? Structurally, the
EF-hand domain creates a highly negative surface electrostatic potential
(Fig. 1B). Does the negatively charged surface of the EF-hand domain
directly bind Ca2+ and at what precise sites? Are the negatively
charged residues allosterically coupled to more distant binding sites?
Ultimately, the high-resolution structural elucidation of Ca2+ depleted
EFSAM, direct atomic level Ca2+ binding experiments, and molecular
dynamics simulations will begin to tease out the answers to these
questions. New surprising discoveries always generate new important
questions.
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Fig. 1. Human STIM1 EFSAM solution struc-
ture. (A) Backbone cartoon representation of
Ca2+ loaded STIM1 EFSAM. The EF-hand do-
main is shaded green, and the SAM domain is
shaded blue. The Ca2+ coordinated in the ca-
nonical EF-hand loop is shown as a yellow
sphere. All Asp and Glu residues, excluding the
canonical EF-hand loop, are shown as red
sticks. (B) Electrostatic surface potential of
Ca2+ loaded STIM1 EFSAM. The surface po-
tential is shown as a gradient between +5
(blue) and −5 (red) kT/e, calculated at pH 7.4
and 37 °C. The images in (A) and (B) were
rendered using the 2K60.pdb coordinate file.
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