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Background: GTPases regulate cellular signaling by
cycling between GDP-(inactive) and GTP-(active) bound
states.
Results: Rheb GTPase cycling was manipulated by struc-
ture-guided mutagenesis of an ultraconserved residue.
Conclusion: Constitutively activated or inactive Rheb
mutants were generated by substitutions that displace the
hydrolytic water or �-phosphate, respectively.
Significance: These mutants offer new research tools,
and the approach may be extended to other GTPases.

Constitutively activated variants of small GTPases, which
provide valuable functional probes of their role in cellular sig-
naling pathways, can often be generated by mutating the canon-
ical catalytic residue (e.g. Ras Q61L) to impair GTP hydrolysis.
However, this general approach is ineffective for a substantial
fraction of the small GTPase family in which this residue is not
conserved (e.g. Rap) or not catalytic (e.g. Rheb). Using a novel
engineering approach, we have manipulated nucleotide binding
through structure-guided substitutions of an ultraconserved
glycine residue in the G3-box motif (DXXG). Substitution of
Rheb Gly-63 with alanine impaired both intrinsic and TSC2
GTPase-activating protein (GAP)-mediated GTP hydrolysis by
displacing the hydrolytic water molecule, whereas introduction
of a bulkier valine side chain selectively blocked GTP binding by
steric occlusion of the �-phosphate. Rheb G63A stimulated
phosphorylation of the mTORC1 substrate p70S6 kinase more
strongly than wild-type, thus offering a new tool for mammalian
target of rapamycin (mTOR) signaling.

The Ras superfamily comprises 167 members, which share a
common fold, and function as “switches” to regulate diverse
cellular signaling pathways (1). Small GTPases cycle between
an activated GTP-bound state that interacts with and activates
downstream effector proteins to drive signaling and an inactive
GDP-bound state. Thus, GTPases are inactivated by hydrolysis
of the �-phosphate of GTP and can be reactivated by exchange
of GDP for a new molecule of GTP, processes that occur slowly,
but are catalyzed by the upstream regulators GTPase-activating
proteins (GAPs)2 and guanine nucleotide exchange factors
(GEFs), respectively. Mutations that impair GTP hydrolysis
perturb this cycle and generate hyperactivated variants (e.g. Ras
G12V and Q61L) that are often associated with disease pro-
cesses. Nevertheless, constitutively activated and inactive
GTPase mutants are indispensable research tools for probing
the function of GTPases and dissecting the signaling pathways
they regulate. The strategy most widely used to generate acti-
vated GTPases employs point mutations of a solvent-exposed
glutamine residue in the G3-box motif (2) in switch II (five
G-boxes comprise conserved sequence elements for nucleotide
binding and effector recognition). This glutamine is conserved
in 73% of human GTPases (3) and has been demonstrated to be
a key catalytic residue in several cases. Structural and enzymatic
studies of Ras have shown that the carboxamide oxygen of this
glutamine side chain (Gln-61) catalyzes GTP hydrolysis by
increasing the nucleophilicity of a hydrolytic water molecule
(H2Ocat) positioned in-line with the �-phosphate (4). Although
this mechanism is conserved among many GTPases, this resi-
due is substituted in one-quarter of small GTPases, and in some
Ras superfamily members, this glutamine is present but non-
catalytic. These GTPases have lower catalytic activity, which
may proceed through alternate mechanisms. In Ras homolog
enriched in brain (Rheb), the G3-box glutamine residue (Gln-
64) is found in a noncatalytic conformation, and its mutation
has no impact on intrinsic hydrolysis and only modestly
reduces GAP-mediated hydrolysis (5–7). Mutations of Ras
Gly-12 impair GTP hydrolysis because the presence of a side
chain restricts the proper alignment of the catalytic residue;
however, Rheb already has a bulky residue (Arg-15) in this posi-
tion, and its mutation has little effect on hydrolysis (6). Thus,
despite the modest impact of the Q64L mutation, it remains
well used for lack of a more robust activated Rheb variant
(7–10). In mutagenic analyses of residues potentially mediating
the noncanonical catalytic mechanism of Rheb, mutation of
Asp-65 had the greatest impact on catalytic activity (11); how-
ever, the reduction in intrinsic GTPase activity was limited to a
modest �30% (D65A). Tuberous sclerosis complex 2 (TSC2)
possesses a GAP activity that accelerates the intrinsic GTP
hydrolysis of wild-type Rheb (6, 12). Mutation of Rheb Asp-65
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also impaired sensitivity to TSC2 GAP, but Rheb D65A did not
fully activate mammalian target of rapamycin complex 1
(mTORC1), possibly due to weakened interaction (11). There-
fore, we sought to develop novel strategies to control the
GTPase cycle of Rheb and other GTPase proteins that lack the
canonical catalytic machinery.

EXPERIMENTAL PROCEDURES

Protein Preparation—Mus musculus Rheb (residues 1–169)
WT and G63A and G63V mutants and TSC2 GAP domain
(residues 1,525–1,742) were expressed as glutathione S-trans-
ferase (GST) fusions from the pGEX2T vector in Escherichia
coli (BL21 strain) as described previously (13). Briefly, bacteria
were grown in minimal M9 media supplemented with either
14NH4Cl or 15NH4Cl at 37 °C to A600 � 0.6, and protein expres-
sion was initiated with 0.25 mM isopropyl-1-thio-�-D-galacto-
pyranoside at 15 °C. Mutations were introduced using
QuikChange site-directed mutagenesis (Stratagene). The pro-
teins were affinity-purified using glutathione-Sepharose,
cleaved from the GST tag by thrombin, and further purified
using Superdex 75 (GE Healthcare) size exclusion chromatog-
raphy. Human Rap1A (residues 1–167) was expressed using
pET28 vector and purified using nickel-nitrilotriacetic acid
resin followed by removal of the His tag with thrombin and
further purification by Superdex 75 size exclusion chromatog-
raphy. Small GTPase proteins expressed in E. coli were co-pu-
rified with guanine nucleotide.

NMR-based Real-time GTPase Assay—For GTP hydrolysis
assays, the small GTPase proteins were loaded with GTP in the
presence of EDTA and 10-fold excess GTP, and following the
addition of MgCl2, excess reagents were removed by passage
through a desalting column (PD MidiTrap G-25; GE Health-
care) equilibrated with NMR buffer (20 mM Tris, pH 7.4, 100
mM NaCl, 5 mM MgCl2, and 1 mM Tris(2-carboxyethyl) phos-
phine hydrochloride). The final protein concentration used in
NMR experiments was 0.3 mM. The proteins were fully GTP-
loaded at the start of each assay, as judged by 1H-15N heteronu-
clear single-quantum coherence (HSQC) spectrum. Prior to
nucleotide exchange assays, the GTPase proteins were incu-
bated at room temperature for a minimum of a week and mon-
itored by 1H-15N HSQC spectra to ensure that E. coli-derived
GTP had hydrolyzed, and then exchange reactions were initi-
ated by the addition of 1.5 mM GTP (5-fold molar excess). For
GAP assays, TSC2 GAP domain was added to the GTP-loaded
Rheb (WT or mutant) at a molar ratio of 1:2.

All NMR spectra were acquired on Bruker AVANCE II 800-
MHz spectrometer equipped with a 5-mm TCI CryoProbe or a
600-MHz spectrometer with a TCI 1.7-mm MicroCryoProbe.
1H-15N HSQC spectra with sensitivity enhancement were col-
lected in succession with four scans (10-min acquisition time)
to monitor the GTPase reaction at 293.2 K. Spectral processing
was carried out with NMRPipe (14), and the nucleotide-sensi-
tive peaks were integrated via Gaussian line fitting using
SPARKY (15). Residues exhibiting distinct and well resolved
peaks for each nucleotide-bound state were monitored as
reporters of the reaction rates, as described previously (6). For
each pair of reporter resonances, the fraction of protein in the
GDP-bound state was calculated as IGDP/(IGDP � IGTP), where I

represents intensity, plotted against time and fit to one-phase
exponential decay or association functions for nucleotide
exchange and hydrolysis, respectively. The error was estimated
as described previously (6). Because resonance assignments are
not available for Rap1A GTPase, the fraction of protein in the
GDP-bound state was calculated as IGDP

avg/(IGDP
avg � IGTP

avg),
where IGDP

avg and IGTP
avg represent the average intensities of

GDP- and GTP-specific peaks. The error was then estimated
from spectral noise and propagated accordingly. Data fitting
was performed with Prism (GraphPad software).

Crystallization and Data Collection—Crystals of Rheb (resi-
dues 1–169) WT, G63A, and G63V mutants were grown with
seeding using the hanging drop vapor diffusion method at room
temperature. The protein solution contained 0.8 mM protein,
20 mM Tris-HCl (pH 8.0), 200 mM NaCl, 5 mM MgCl2, and
0.02% NaN3 w/v. The protein solution was mixed with an equal
volume of the well solution (100 mM Tris-HCl (pH 8.5), 200 mM

sodium acetate trihydrate, and 30% w/v polyethylene glycol
4000). Crystals of Rheb WT and G63A mutant were soaked in a
solution containing 20 mM GTP and 25% polyethylene glycol
400 for 2 h at room temperature to allow nucleotide exchange,
whereas G63V crystals were soaked in 25% polyethylene glycol
400 alone. Crystals were then flash-frozen in liquid nitrogen.
Diffraction data (WT and G63A) were collected at 100 K on a
Rigaku FR-E super-bright rotating anode generator equipped
with a Rigaku Saturn A200 CCD detector, Osmic VariMax HF
optics, and an Oxford cryosystem with a wavelength of 1.54 Å at
the Structural Genomics Consortium, Toronto, and processed
with HKL2000 (16). Rheb WT GTP and G63A GTP diffracted
to a resolution of 2.2 and 2.40 Å, respectively. The diffraction
data for Rheb G63V GDP was collected at 100 K with copper K�
radiation on a Bruker Microstar X8 PROTEUM SMART CCD
system with a wavelength of 1.54 Å to a resolution of 2.25 Å and
processed with the PROTEUM suite of programs.

Structure Determination and Refinement—The structures of
GTP-bound murine Rheb WT and G63A were solved by molec-
ular replacement using the structure of human Rheb WT in
GTP-bound conformation (PDB: 1XTS) as the initial search
model, whereas the structure of murine Rheb G63V in complex
with GDP was solved using the structure of human Rheb in
GDP-bound conformation (PDB: 1XTQ). The final models
were generated after successive rounds of refinements using
PHENIX (17) accompanied by manual model building with
Coot (18). During the course of refinement, densities for the
nucleotides and the hydrolytic water molecules (in the case of
Rheb WT) were clearly visible in difference electron density
maps, which enabled us to manually position the molecules.
WT and mutant proteins were crystallized with two Rheb mol-
ecules in the asymmetric unit, with one of the switch I and II
regions of the molecule being involved in the crystal packing.
All the structures discussed in this study are from the Rheb
molecules where the switches I and II are not involved in crystal
packing, except for the GDP-bound Rheb G63V, where the
electron density of switch II was weak in the absence of crystal
contact but well resolved upon crystal contact formation. It is
worthwhile to note that switch II in GDP-bound Rheb G63V
adopted a similar conformation to the GDP-bound Rheb WT
(PDB: 1XTQ). The Ramachandran statistics of the final
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models were as follows: 94.2, 95.1, and 93.9% of the residues
were in the preferred region for Rheb WT GTP, Rheb G63A
GTP, and Rheb G63V GDP. The remainder of the residues,
for each model, were in the allowed region with no outliers.
The data collection and refinement statistics can be found in
Table 1.

Cell-based Phosphorylation Assays—Antibodies against p70
S6 Kinase and its Thr-389-phosphorylated form were from Cell
Signaling Technology, and the M2-FLAG antibody was from
Sigma. Murine Rheb cDNA (Open Biosystems) was subcloned
into FLAG-tagged pcDNA5. The mutant Rheb construct was
generated via site-directed mutagenesis (Agilent). Myc-p70
S6K was cloned in to pcDNA3.1. The p70 S6K phosphorylation
assays were performed according to a previously described pro-
tocol (11) with the following modifications. In brief, 3 � 105

HeLa H1 and 2.7 � 106 TSC2�/� MEF cells, cultured in Dul-
becco’s modified Eagle’s medium containing 10% fetal calf
serum (DMEM/10% FCS), were co-transfected with FLAG-
Rheb WT or G63A and Myc-S6K at a ratio of 20:1 using Effect-
ene (Qiagen) and 5:1 using GenJet reagent (SignaGen) for HeLa
H1 and MEF cells, respectively. Twenty-four hours after trans-
fection, the media were exchanged with serum-free DMEM.
Forty-eight hours after transfection, cells were either further
starved or stimulated with 100 nM insulin for 15 min prior to
harvesting. FLAG-Rheb and Myc-S6K were immunoprecipi-
tated from normalized lysates with anti-FLAG and anti-Myc
antibodies and protein A/G mix PureProteome magnetic beads
(Millipore) for Western blot analysis.

RESULTS AND DISCUSSION

The hydrolytic H2Ocat has been observed in almost all high-
resolution GTPase structures. It is coordinated by hydrogen

bonds with the �-phosphate of GTP and a common set of highly
conserved residues including the backbone carbonyl of a thre-
onine in the G2-box and the backbone amide of a glycine in the
G3-box. The threonine (Thr-35 in Ras) is in the C-terminal part
of switch I and is 90% identical among human GTPases (3),
whereas the glycine (Gly-60 in Ras, 93% identity) (3) is in the
N-terminal part switch II. The curved-loop configuration of the
G3-box DXXG motif (where X stands for any amino acid)
allows the aspartic acid to coordinate a Mg2� ion required for
nucleotide binding (19) and positions the C� of the glycine next
to H2Ocat and proximal to the �-phosphate (1). On the basis of
this structure, we hypothesized that by substituting various res-
idues for glycine, we could introduce side-chain steric clashes
to selectively perturb binding of the H2Ocat and/or the �-phos-
phate. Displacing the H2Ocat would impair GTP hydrolysis,
yielding an activated variant, whereas blocking �-phosphate
binding would yield an inactive mutant that can only accom-
modate GDP. We first applied this novel engineering approach
to the mTOR activator Rheb (Fig. 1A), examining how muta-
tions of Gly-63 affect its noncanonical GTPase cycle.

Real-time NMR-based GTPase assays (6) demonstrated that
mutation of Gly-63 to alanine substantially reduced the intrin-
sic GTP hydrolysis rate of Rheb by �4.5-fold, (Fig. 1B), consis-
tent with our notion that the introduction of a methyl side chain
could destabilize the H2Ocat. Most remarkably, no TSC2 GAP
activity could be detected for the Rheb G63A mutant (Fig. 1B),
which was predicted because GAP-catalyzed hydrolysis utilizes
the same H2Ocat, stimulating the reaction by stabilizing and
complementing the intrinsic catalytic machinery. Finally, to
investigate whether the mutation affects intrinsic nucleotide
exchange of GDP for GTP, we carried out real-time NMR

TABLE 1
Data collection and refinement statistics
Statistical information regarding the crystal structures of Rheb WT and G63A mutant in GTP-bound form and G63V mutant in GDP-bound form.

Rheb-WT-GTP Rheb-G63A-GTP Rheb-G63V-GDP

Data collection
Space group P 2 21 21 P 2 21 21 P 21 21 2
Cell dimensions

a, b, c (Å) 57.7, 70.5, 79.8 57.6, 70.2, 79.7 70.3, 79.2, 57.3
�, �, � (°) 90, 90, 90 90, 90, 90 90, 90, 90

Resolution (Å) 50.0-2.20 (2.24-2.20)a 50.0-2.40 (2.44-2.40)a 50-2.25 (2.35-2.25)a

Rsym 0.127 (0.549) 0.155 (0.574) 0.073 (0.344)
I/�I 15 (4.1) 14.9 (3.8) 12.3 (3.4)
Completeness (%) 99.0 (98.6) 100 (100) 99.9 (100)
Redundancy 7.0 (7.1) 7.7 (7.8) 13 (8.0)

Refinement
Resolution (Å) 39.9-2.2 38.9-2.4 28.7-2.25
No. of reflections 15,674 12,371 14,672
Rwork/Rfree 20.3/25.6 19.5/24.3 20.6/25.9
No. atoms

Protein 2738 2736 2742
Ligand/Mg2� ion 62/2 62/2 54/2
Water 130 119 125

B-factors
Protein 25.2 30.7 21.9
Ligand/ion 26.4 33.3 17.8
Water 28.1 34.3 23.1

r.m.s.d.
Bond lengths (Å) 1.04 1.11 1.13
Bond angles (°) 0.007 0.008 0.008

Ramachandran statistics
Most Favorable region (%) 94.8 95.1 94.6
Allowed region (%) 5.2 4.9 5.4
Disallowed region (%) 0 0 0

a Data set was collected from one crystal. Values in parentheses are for highest resolution shell.
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exchange assays. Rheb G63A exchanged �10 times faster than
the wild-type protein (Fig, 1C), and although this effect was not
anticipated a priori, it would further drive this mutant toward
the activated state. Conversely, mutation of Gly-63 to valine
resulted in a Rheb variant that failed to bind GTP (Fig. 1C),
consistent with steric interference between the bulkier side
chain and the �-phosphate. As expected, Rheb G63V remained
fully GDP-bound and inactive. Therefore, we have identified a
single, highly conserved residue whose mutation can result in
two diametrically opposed effects on activation.

Rheb activates mTORC1, which regulates protein biosynthe-
sis, cell growth, proliferation, and autophagy (20 –22). Consis-
tent with our biochemical data (Fig. 1B), overexpression of
Rheb G63A in HeLa cells stimulated phosphorylation of the
mTORC1 kinase substrate p70 S6K more strongly than wild-
type Rheb in the absence of serum, when TSC2 is active (Fig.
1D). Upon serum stimulation, which inactivates TSC2, p70 S6K
is highly phosphorylated, and its phosphorylation cannot be
further enhanced by expression of wild-type or G63A Rheb,
suggesting that under this condition, p70 S6K phosphorylation
is limited by mTORC1 rather than the availability of endoge-
nous Rheb GTP (Fig. 1D). Similarly, the high level of p70 S6K
phosphorylation in TSC2-null MEFs cannot be further
enhanced by expression of wild-type or G63A Rheb (Fig. 1E).
Although Rheb G63V expressed well in E. coli, in mammalian
cells its expression was �90% lower than the wild type (data not
shown); thus, we could not reliably probe the effects of this
mutation on mTORC1 signaling. Reduced expression of nucle-
otide-free Rheb mutants has been reported previously (7). The
inability to bind GTP, which is much more abundant than GDP
in mammalian cells (23), might explain the poor expression of
G63V, despite the stability of its GDP-bound form.

To validate that these mutations of the ultraconserved
G3-box glycine (Fig. 2A) exert their effects through the antici-
pated mechanisms, we solved the crystal structures of wild-type
Rheb and the G63A mutant bound to GTP and of the Rheb
G63V mutant bound to GDP (Figs. 2, B–D, and 3, A–C). The
overall fold was not substantially affected by the mutations (all
atoms r.m.s.d. WT GTP versus G63A GTP � 0.23 Å and WT
GDP (5) versus G63V GDP � 0.74 Å); however, the electron
density of the nucleotide-binding pocket confirmed the posi-
tioning of the Ala-63 side chain in the H2Ocat-�-phosphate-
binding cavity of the mutant (Figs. 2C and 3B). Although the
electron density of the H2Ocat is clearly visible in the WT struc-
ture, no corresponding density is observed in the G63A mutant
structure (Fig. 3, A and B). Hence we hypothesize that the
reduced residency of the hydrolytic H2Ocat decreases the ability
of the G63A mutant to hydrolyze GTP, in full agreement with
the biochemical observations. In the structure of Rheb G63V in
complex with GDP, the bulkier valine side chain occupies addi-
tional space within the nucleotide-binding pocket. Val-63 C�
was positioned less than 2 Å from the �-phosphate location
determined in the GTP-bound wild-type structure (Figs. 2D
and 3C). Thus, enthalpic costs and steric clashes prevent the
�-phosphate from approaching the methyl protons, explaining
the lack of GTP binding and nucleotide exchange for Rheb
G63V.
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FIGURE 1. Manipulation of the GTPase cycle of Rheb and mTOR signaling
through substitutions of Gly-63. A, schematic illustration of the mTORC1 sig-
naling pathway. Rheb GTP stimulates the kinase activity of mTORC1, which phos-
phorylates substrates including 4EBP1 and p70S6K1 that promote protein bio-
synthesis and cell cycle progression. The GAP activity of TSC2 catalyzes hydrolysis
of GTP to inactivate Rheb, and TSC2 is regulated by the availability of growth
factors and energy. The identity and existence of a GEF for Rheb have not been
resolved. Translationally controlled tumor protein (TCTP) (27), protein associated
with Myc (PAM) (28), and soluble ��-tubulin (29) have been proposed as Rheb
GEFs; however, such a role for TCTP has been disputed (30, 31). B, hydrolysis of
GTP by wild-type Rheb and G63A in the presence and absence of the TSC2 GAP
domain, monitored by real-time NMR. Error bars represent standard deviation of
the fraction of GDP (IGDP/(IGDP � IGTP)) reported by 10 residues. C, intrinsic nucle-
otide exchange (GDP to GTP) of wild-type Rheb, G63A, and G63V. Reaction rates
are in min�1. D and E, Rheb G63A mutation increases activation of mTORC1 sig-
naling under starvation. HeLa cells (D) and TSC2-deficient MEF cells (E) were trans-
fected with wild-type Rheb, G63A, or empty vector (EV) and starved or stimulated
with insulin prior to lysis. Each experiment was performed in duplicate with one
representative blot shown.
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Previously, an analogous substitution (G60A) in Ras was bio-
chemically and structurally characterized. This G60A mutation
reduced the intrinsic GTP hydrolysis rate of Ras as well; how-
ever, this was mediated by a distinct mechanism involving sub-
stantial distortions of both switch regions that displace the cat-
alytic glutamine away from the nucleotide-binding site by
�5– 8 Å (24). This conformation resembled that of nucleotide-
free Ras in complex with its exchange factor Son of Sevenless
(SOS) (24 –26), and consequently, Ras G60A was shown to
exert a dominant negative effect in cells by forming a stable
nonproductive complex with SOS that sequesters this GEF (24,
26). In contrast, the switch I and II regions of Rheb retain the
wild-type conformation in the G63A mutant structure (all
atoms r.m.s.d. of 0.22 and 0.35 Å for switch I and II, respec-
tively). Thus, the in vivo phenotypes of G3-box glycine mutants
are GTPase-specific and must be characterized. Nevertheless,
the ability to generate gain-of-function mutants for some non-

canonical GTPases is especially valuable for developing probes.
We therefore investigated the effect of substituting Gly-60 in
Rap1A (37% sequence identity with Rheb), a small GTPase for
which no mutation impairing GTP hydrolysis is available
because the canonical catalytic glutamine is replaced by a thre-
onine. The G60A mutation reduced the GTP hydrolysis rate of
Rap1A by 3-fold (Fig. 4A), which is remarkable considering that
no other mutation has been reported to inactivate Rap GTPase
activity. In the case of Rap1A, however, the G60V mutation did
not perturb nucleotide exchange activity (Fig. 4B), suggesting
that the valine side chain adopts a different conformation from
that of Rheb G63V. Hence the structural and functional prop-
erties of G3-box glycine mutations should be investigated for
each GTPase. Intriguingly, a few examples of G3-box Gly resi-
due mutations have been listed in the catalogue of somatic
mutations in cancer (COSMIC) database (K-Ras G60A/G60V/
G60D, H-Ras G60S, and Rheb G63W). Although these muta-
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tions were identified in colon, thyroid, and hematopoietic can-
cers, it remains to be determined whether they are oncogenic
“driver” mutations.

In this study, we have successfully demonstrated a structure-
guided approach whereby mutating a single residue in the con-
served G3-box can control nucleotide binding, thereby locking
Rheb in an activated (G63A GTP) or an inactive (G63V GDP)
conformation. In serum-starved HeLa cells, the G63A mutant
strongly activated the downstream effector mTORC1, thus
enhancing p70 S6K phosphorylation, whereas the inability to
bind GTP rendered G63V unstable in these cells. The crystal
structures of the two Rheb mutants provided the structural
basis for the unique features of each mutant. To our knowledge
this is the first report of a mutation that severely impairs GTP
hydrolysis of GTPases with noncanonical catalytic mecha-
nisms. This diverse group of GTPases includes several mem-
bers from four of the five GTPase subfamilies: Ras, Rab, Rho,
and Arf (Fig. 2A); thus, this strategy should be a valuable bio-
logical tool for probing the functions of these unique proteins.
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