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Defects in the RAS small G protein or its associated network of reg-
ulatory proteins that disrupt GTPase cycling are a major cause of
cancer and developmental RASopathy disorders. Lack of robust func-
tional assays has been amajor hurdle in RAS pathway-targeted drug
development. We used NMR to obtain detailed mechanistic data on
RAS cycling defects conferred by oncogenic mutations, or full-length
RASopathy-derived regulatory proteins. By monitoring the confor-
mation of wild-type and oncogenic RAS in real-time, we show that
opposing properties integrate with regulators to hyperactivate on-
cogenic RAS mutants. Q61L and G13D exhibited rapid nucleotide
exchange and an unexpected susceptibility to GAP-mediated hydro-
lysis, in direct contrast with G12V, indicating different approaches
must be taken to inhibit these oncoproteins. An NMR methodology
was established to directly monitor RAS cycling by intact, multido-
main proteins encoded by RASopathy genes in mammalian cell
extracts. By measuring GAP activity from tumor cells, we demon-
strate how loss of neurofibromatosis type 1 (NF1) increases RAS-
GTP levels in NF1-derived cells. We further applied this methodology
to profile Noonan Syndrome (NS)-derived SOS1mutants. Combining
NMR with cell-based assays allowed us to differentiate defects in
catalysis, allosteric regulation, andmembrane targeting of individual
mutants, while revealing a membrane-dependent compensatory ef-
fect that attenuates dramatic increases in RAS activation shown by
Y337C, L550P, and I252T. Our NMR method presents a precise and
robust measure of RAS activity, providing mechanistic insights
that facilitate discovery of therapeutics targeted against the RAS
signaling network.

nuclear magnetic resonance | real-time bioassay | guanine nucleotide
exchange factor inhibition

RAS functions downstream of membrane-bound receptors to
control cell proliferation, differentiation, and survival path-

ways crucial to development. Deregulated RAS signaling leads to
disorders ranging from cancer to developmental syndromes
termed RASopathies (1). RAS and its associated signaling net-
work represent extremely attractive therapeutic targets, yet there
has been minimal success at exploiting these for drug develop-
ment (2, 3).
RAS exists in two distinct conformations dependent on the state

of bound nucleotide. Following stimulation, a GDP-to-GTP ex-
change is catalyzed by guanine nucleotide exchange factors
(GEFs), transmitting downstream signals through RAS-GTP to
diverse effector proteins (4). Inactivation via GTP hydrolysis is
assisted by GTPase-activating proteins (GAPs), which enhance
the slow intrinsic activity of the enzyme. Disorders stemming from
aberrations in RAS GTPase cycling (Fig. 1A) are driven by ab-
normally high levels of activated RAS. Single amino acid muta-
tions in RAS proteins are found in a remarkable 30% of human
tumors, often in those with high-risk clinical features (1). Onco-
genic mutations are most common at three loci, considered
“hotspots” for transformation: Gly12, Gly13, and Gln61. Themost
frequently found G12V and Q61L mutations lower intrinsic hy-
drolysis rates (5–8) and are widely believed to be insensitive to
GAPs (9, 10). The biochemistry of G13D remains poorly studied,
but clinical data suggest the biologic behavior of tumors carrying

K-RASmutations is highly codon-dependent (11, 12). This finding
directly correlates underlying RAS biochemical defects with can-
cer pathology, and a better appreciation of the intrinsic properties
of RAS and its surrounding regulatory network could facilitate the
design of specific, mechanism-based therapeutic approaches for
patients carrying these mutations.
RASopathies are a group of hereditary developmental syn-

dromes triggered by germ-line mutations in genes encoding com-
ponents of the RAS/MAPK pathway (1, 13). Neurofibromatosis
type 1 (NF1), resulting from deficiency in the RASGAP neuro-
fibromin (NF1) (14, 15), and Noonan Syndrome (NS), caused by
gain-of-function mutations in the RASGEF SOS1 (in addition to
other RAS/MAPK pathway components such as PTPN11, RAS,
RAF, andMEK) (16, 17), are two RASopathies that directly affect
GTPase cycling (Fig. 1A). Characterizing specific mutations has
proven difficult, as they evoke only a slight increase in RAS-GTP
levels and they affect large, intricately regulated proteins.
In this article we apply our recently developed GTPase assay

(18) to directly measure RAS cycling defects and the regulatory
impact of intact, multidomain RASopathy proteins in mammalian
cell extracts. We characterize how opposing intrinsic properties
integrate with regulators to hyperactivate oncogenic RAS. Our
approach could detect NF1-deficiency in tumor cells and enable
profiling of NS-associated SOS1 mutants. This methodology
demonstrates the utility of NMR as a powerful readout probe for
cell-based enzymatic activity, distinct from in-cell NMR or me-
tabolite screening techniques. Our NMR assay does not rely on
modified nucleotides (19) or effector-based interactions, and is
amenable to high-throughput approaches toward drug discovery.
As a proof of concept, we exploit the ability of an RAS binding
domain (RBD) to inhibit hydrolysis, and take a synthetic ap-
proach to obstruct both GEF-mediated and intrinsic exchange
activity of wild-type and oncogenic RAS.

Results
Exchange and Hydrolysis Defects in Oncogenic RAS. To develop
a robust, real-time NMR approach to monitoring defects in RAS
GTPase cycling, we began by characterizing intrinsic exchange and
hydrolysis. Overlays of 2D 1H/15N heteronuclear single quantum
coherence (HSQC) spectra in the active (GTP-bound) versus in-
active (GDP-bound) state reveal significant chemical-shift per-
turbations in wild-type and oncogenic RAS (Fig. 1B and Fig. S1).
To measure hydrolysis, we loaded RAS proteins with GTP and
recorded successive HSQC spectra. G12V (10×) and Q61L (80×)
had drastically reduced hydrolysis rates (Fig. 1C, all rates are de-
tailed in Table S1), consistent with data obtained using radio-
labeled nucleotides (7, 20). G13D showed a lesser 2.8-fold
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reduction in hydrolysis rate. The influence of nucleotide exchange
on the activation state of these mutants had not been well studied.
To analyze intrinsic exchange, we added 10-fold molar excess
GTPγS to GDP-loaded RAS, mimicking physiological nucleotide
concentrations but avoiding competition with hydrolysis (Fig. 1D
and Fig. S2A). Q61L undergoes 2.4-fold faster exchange than wild-
type, whereas G12V has a 1.8-fold reduced rate. G13D showed
rapid intrinsic exchange, 15-fold faster than wild-type. Previously
determined nucleotide binding properties (wild-type, G12V, and
Q61L; see summary in Table S2) clarify the contrasting rates and
plateaus observed by NMR, but these real-time data remarkably
demonstrate the characteristics rendering RAS mutants oncogenic.
Selective monitoring of 15N-labeled RAS permits the in-

troduction of unlabeled proteins, which remain NMR “invisible.”
This allowed design of enzymatic assays examining the capacity for
regulatory proteins to control RAS cycling. Using such an ap-
proach, we first monitored activity of the catalytic regions from two
RAS regulators: SOScat from the SOS1 exchange factor (Rem/
Cdc25 domains) (21), and GAP-334 from p120GAP (10) (Fig. 2A).
When SOScat was added to 15N-RAS in the presence of GTP, nu-
cleotide exchange was observed by chemical-shift perturbations,
and the subsequent addition of GAP-334 stimulated hydrolysis (Fig.
2B). We were able to precisely quantify activity from these catalytic
fragments using decreasing molar ratios (Fig. S2 B and C). Fig. 2C
presents the full characteristics of wild-type RAS in our assay.
In addition to reduced intrinsic GTPase activities, oncogenic

RAS proteins are believed to resist GAP-mediated hydrolysis (9,
10). Indeed, G12V showed complete resistance to even stoichio-
metric amounts of GAP-334 (Fig. S2 D and E). In contrast, ad-
dition of equimolar quantities of GAP-334 actually increased the
hydrolysis rates of Q61L (148×) and G13D (9×) (Fig. S2 F andG).
Nonetheless, these rates remain markedly slower than wild-type

rates using 1:5,000 GAP-334. We next considered SOS1-mediated
activation of these mutants, and found that G12V required in-
creased SOScat to achieve wild-type exchange rates (Fig. S2D).
Conversely, Q61L required less SOScat, consistent with its high
intrinsic exchange (Fig. S2F). The extremely rapid exchange rate
of G13D prevented measurements with SOScat. As summarized in
Fig. 2D and Fig. S2H, G12V is activated at a slower rate than wild-
type, but its reduced catalytic activity and complete resistance to
GAP sustain an active state. Conversely, Q61L is somewhat sen-
sitive to GAP inactivation, but maintains a predominantly GTP-
bound state via increased nucleotide exchange. This is extended
even further in G13D, which has a less severe hydrolysis defect but
an exceptionally high exchange rate. These results established
a capacity for studying both positive and negative regulatory inputs
to RAS using NMR, and revealed properties of G12V, G13D, and
Q61L that render them transforming.

Probing NF1-Deficiency in Tumor-Derived Cells. GAPs are large,
multidomain proteins that are routinely studied following purifi-
cation of their catalytic regions. These analyses overlook potential
autoregulatory mechanisms, differential association with cellular
cofactors, or posttranslational modifications. Work on p120GAP,
for example, suggests the full-length protein has 20-fold more
activity than the C-terminal fragment alone (22). We therefore
sought to directly monitor the activity of full-length GAPs from
mammalian cell extracts by NMR. To start, we stably incorporated
a Tet-inducible, Flag-tagged p120GAP construct into HEK 293
cells. Fig. 3A illustrates how exogenously expressed p120GAP
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dependent changes in RAS conformation. Overlay of 2D 1H/15N HSQC spectra
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(red). RAS-GTP-derived peaks eventually shift to GDP positions as hydrolysis
occurs (shown for Y157). (C) Use of peak intensity data to determine rates of
intrinsic hydrolysis for wild-type andmutant RAS. 15N-RAS proteins were loaded
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stimulated RAS-GTP hydrolysis 9-fold, whereas control lysates
showed only a 2-fold increase (attributable to endogenous GAPs).
These data established our capacity to study the activity of full-
length GAPs expressed in cells.
Patients diagnosed with NF1 are characterized by pigmentation

defects, osseous lesions, cognitive deficits, and predisposition to
malignancies, such as neurofibrosarcoma and leukemia. Although
it is believed that NF1 pathogenesis involves excessive RAS acti-
vation, it has been difficult to detect increased RAS-GTP in many
NF1-deficient tumor cells (23, 24). Our approach could therefore
prove valuable in identifyingRAS cycling defects in GAP-deficient
cells. To test this possibility, we obtained two Schwann-like cell
lines: CRL-2884, derived from a malignant peripheral nerve
sheath tumor (MPNST) isolated from an NF1 patient (25), and
CRL-2768 control Schwannoma cells (26). Expression levels of
relevant proteins were profiled using immunoblots on whole-cell
extracts (Fig. 3B). These results revealed equivalent levels of
p120GAP and RAS, and confirmed NF1-deficiency in CRL-2884.
To assess whether a conventional approach could detect accu-
mulated RAS-GTP, we performed an RBD interaction assay (Fig.
3B) but observed no difference in RAS-GTP levels. This finding
attests to a lack of sensitivity of the effector-binding approach, and
exemplifies the challenges in studying disorders such as NF1.
In contrast, NMR-based measurements showed a clear defect

in RAS-GTP hydrolysis activity conferred by MPNST-derived
cell extracts (Fig. 3C). CRL-2884 cells exhibited only 66% of the
total hydrolysis capacity of controls (attributable to activity from
GAPs other than NF1). Much less material was required com-
pared with standard assays, and samples could be frozen, thawed,

and stored on ice with no perceptible loss in activity. Therefore,
our NMR-based approach is more sensitive and more robust
than current biochemical methods for studying GAP activities in
cell extracts.

Activation and Regulation of Full-Length SOS1. SOS1 is regulated by
an allosteric mechanism, whereby a network of PH, DH, and HF
domain interactions control access to an Rem domain allosteric
site that binds RAS, which in turn controls exchange of a second
RAS protein at the active site (21, 27, 28). This makes it a para-
digm for the requisite study of full-length proteins. Recruitment of
SOS1 to membranes serves two functions: relief of autoinhibition
and proximity to RAS. To monitor its exchange activity by NMR,
SOS1 was transiently expressed in HEK 293 cells and lysates
mixed with 15N-RAS and GTPγS. Increasing rates of nucleotide
exchange were observed, with curves shifting from an exponential
to sigmoidal fit (Fig. 4A). These NMR assays contain detergent,
reporting on SOS1 activity in the absence of membrane and the
concentration of soluble RAS is sufficient to displace the regula-
tory HF-DH-PH module from the allosteric site. We therefore
reasoned the exponential-sigmoidal shift reflected a requirement
to accumulate RAS-GTP, a better allosteric substrate than RAS-
GDP (28). Indeed, addition of unlabeled RAS preloaded with
GTPγS, but not GDP, eliminated the sigmoidal fit and augmented
the exchange rate (Fig. S3 A and B).
Analysis of SOS1 enzymatic activity requires lipid vesicles (27)

or RAS-pathway activation in cells (29). We considered that
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a combination of NMR-based exchange assays and cell-based
analyses could delineate how specific mutations activate full-
length SOS1, and help interpret the complex interplay between its
regulatory domains and lipid membranes. A panel of mutants
based on known NS mutations and structural data were used to
establish this approach (Fig. S4). Included were mutants thought
to relieve allosteric occlusion [DH-E268A/M269A/D271A (28)
and Link-R552G (27)], stabilize association with membranes [HF-
E108K (29)], and reduce affinity for allosteric RAS [Allo-W729E
(30)]. The activity of these SOS1 variants in serum-starved or
EGF-stimulated cells was assessed by RBD pull-down assays and
pERK immunoblotting (Fig. 4 B and C and Fig. S3 C and D).
Mutations thought to relieve autoinhibition (DH/Link) or en-
hance membrane binding (HF) increased RAS/MAPK output
compared with wild-type. Next, we used NMR to directly assess
RAS nucleotide exchange in lysates normalized for SOS1 ex-
pression (Fig. 4D and Fig. S3 E and F). Exchange activation was
decreased by the allosteric mutation, but augmented by single DH
or Link mutations, while increasing synergistically in the double
mutant. SOS-HF had a wild-type exchange rate, consistent with
the notion it does not alter the autoinhibitory conformation. To
validate this result, the relationship between exchange activity and
pERK induction was plotted (Fig. 4E). SOS1-HF, like SOS1-
CaaX, falls outside an area extrapolated from vector control
through SOS1-WT (representing autoinhibited) and SOS1-DH/
Link (representing allosteric-exposed), rationalized by their in-
creased membrane association. Thus, by combining membrane-
independent NMR measurements with cell-based analyses of
SOS1 activity, we can deconvolute mechanisms by which SOS1
mutants stimulate RAS exchange.

Profiling NS Mutations in Full-Length SOS1. Aberrant SOS1 activa-
tion is a major underlying symptom of NS (16, 17). Available

structural and biochemical data are not sufficient to predict the
efficacy of many NS mutations. We therefore profiled 13 pre-
viously sequenced mutants (16, 17, 31) for which there are no data
pertaining to their activity or molecular mechanism (Fig. 5A and
Fig. S5 A–C). Fig. 5 B and C show the capacity of these mutants to
induce ERK activation in starved cells. Six variants increased
pERK (K170E, Y337C, G434R, L550P, Y702H, I733F), five in-
duced levels comparable to wild-type (T37A, I252T, C441Y,
S548R, P894R), and two actually reduced ERK activation (P655L,
Q977R). The innate, membrane-independent exchange properties
of these NS mutants were then determined by NMR (Fig. 5D).
T37A, C441Y, P655L, and P894R activated RAS exchange only
slightly better than wild-type, whereas Q977R showed reduced
activity. K170E, G434R, and S548R exhibited a significant 1.5-fold
increase in exchange rate, and I252T, Y702H, and I733F imparted
an even greater 2- to 3-fold increase. Y337C and L550P showed
dramatically increased exchange rates (5×, 8×), yet this was not
detectable in cells. Relating ERK activation to exchange revealed
good correlation between the NMR-derived activities and pERK
levels (Fig. 5E). However, Y337C, L550P, and I252T fall outside
the correlation area because of lower than expected pERK stimu-
lation. These residues lie in close proximity (Fig. 5F), with Y337C
tethering the DH and PH domains, L550 bridging the HF/Linker
and DH domains, and I252 residing in the hydrophobic core of the
DH domain. Although these mutations relieve autoinhibition, we
postulated that other factors must compensate their effect in cells
where activity is membrane-dependent. To investigate whether
enhanced membrane recruitment would reveal their exchange
potential, we repeated the assays using serum-stimulated cells
(Fig. S5 D and E). Only wild-type levels of pERK induction were
observed from the three hyperactivated NS mutants. We next
considered that these mutants may have a defect in membrane
binding, and performed cell fractionation. All three hyperactive
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mutants associated with membrane in the same ratio as wild-type
(Fig. S5F). This finding suggests a membrane-dependent mech-
anism is abrogating their activity in cells. Our analyses demon-
strate the value of NMR-based enzymatic assays incorporating
cell extracts, and provide new insight to the molecular mecha-
nisms of individual NS mutations.

Inhibition of RAS Exchange and Hydrolysis by Rationally Designed
RBDs. Our NMR assay requires small amounts of material, func-
tions in real-time with precise kinetics, and can directly evaluate
mutant RAS and RASopathy-associated regulators from cell
lysates. We asked whether our approach could be used to screen
for inhibitors of hydrolysis or exchange. GAPs compete directly
with effectors, and previous data have suggested that GAP-
mediated hydrolysis is inhibited by the c-RAF1 RBD (32). Con-
sistent with this finding, when GTP-loaded RAS was mixed with
GAP-334 in the presence of BRAF RBD, sensitivity to GAP was
abolished (Fig. 6A). Full-length p120GAP activity from whole-cell
extracts was also inhibited (Fig. S6A). These experiments demon-
strate a direct competition between GAPs and effector domains,
and that inhibitors of RAS regulators can be detected by our assay.
RBDs do not possess high affinity for GDP-bound RAS (Fig.

S6B) (33), so we took a synthetic approach to occlude GEFs.
Recently identified point mutations in the c-RAF1 RBD enhance
its interaction with RAS-GDP (34), and we constructed analogous
mutations in the RBD of BRAF (hereafter BRAFGDP) (Fig. S6C).
We verified binding of this mutant to inactive RAS using both
NMR and a cell-based approach (Fig. S6 D and E). To determine
whether our synthetic RBD could occlude and inhibit GEFs, we
monitored SOScat-mediated exchange of 15N-RAS. As shown in
Fig. S6F, BRAFGDP inhibited exchange of wild-type RAS (11×).
Nucleotide exchange of the oncogenic mutant G12V was also
reduced (50×) (Fig. S6G). As revealed earlier, Q61L exhibits both
a high intrinsic rate of exchange and increased sensitivity to
SOScat. Both rates were significantly decreased in the presence of

BRAFGDP (Fig. 6B). Results are summarized in Fig. 6C. Fur-
thermore, the synthetic RBD could prevent RAS activation by
lysates expressing the full-length, hyperactivated SOS1-DH/Link
mutant (Fig. 6D). Thus, we were able to effectively occlude GEF
from the RAS nucleotide binding site to prevent its activation.
These data establish our NMR assay as a viable and potentially
high-throughput method toward drug discovery.

Discussion
We have applied real-time NMR to monitor defects in RAS
cycling. Our approach permits analysis of multidomain regula-
tory proteins, such as p120GAP, NF1, and SOS1 expressed in
cells, and can distinguish defects involving expression, catalysis,
allosteric regulation, and membrane targeting.
As demonstrated by our NMR assays, nucleotide binding

properties combine with hydrolysis defects to alter the active state
of RAS mutants. G12V, G13D, and Q61L show opposing defects
in exchange and hydrolysis, yet all hyperactivate RAS. This finding
implies that different approaches are required for therapeutic
interventions seeking to directly target these proteins. GTP is in
10-fold excess over GDP in cells, and both G13D and Q61L are
likely to be hypersensitive to GEF activation, or unlikely to even
require GEF. Thus, approaches targeting their weakened hydro-
lysis would likely be unsuccessful, but the reverse is true of G12V.
Recent clinical data reveal a codon-dependent efficacy for drugs
targeting RAS-driven tumors, further substantiating that the in-
dividual biochemical properties of these mutants play a vital role
in tumor pathology (12, 35).
NF1 is a GAP that negatively regulates RAS, but many of the

mechanisms controlling the activation, localization, and specificity
of this>250-kDa protein remain unknown.We were able to detect
NF1-deficiency in tumor-derived cells, which had previously re-
quired meticulous radio-labeling experiments (15, 36). We ob-
served a decrease in the total hydrolysis capacity of these lysates,
which appears sufficient to cause accumulation of RAS-GTP
levels able to promote tumourigenesis. Studies must now establish
whether replenishing global loss of hydrolysis activity is enough to
aid patients with NF1, or whether specific activity from neuro-
fibromin is required at precise cellular locales. Details of NF1
activation, such as a role for phosphorylation (37), can now be
studied using NMR in essentially any cell type or tissue system.
SOS1mutations are a major underlying element of NS (16, 17).

Elegant structural and biochemical studies by Kuriyan and col-
leagues have elucidated key elements controlling SOS1 auto-
regulation, including HF and PH domain lipid interactions, and
RAS association with the allosteric site (27–29, 38). As auto-
inhibition of full-length SOS1 is detectable by NMR, we can
combine membrane-independent measurements of RAS activa-
tion with cell-based pERK induction to rationalize activation
mechanisms for the 15NSmutations analyzed in this work. Q977R
was unique in possessing overall weaker activity than wild-type
SOS1, and five othermutations displayed near-identical properties
as wild-type (T37A, C441Y, S548R, P655L, and P894R). A third
group exhibits correlation between amplified exchange activity
and pERK induction (K170E, G434R, R552G, Y702H, and
I733F), as one might predict of NS mutants. The four remaining
mutations are divergent and require some discussion: E108K does
not alter exchange rates, but induces pERK via increased mem-
brane association, as previously hypothesized (27, 29). Y337C,
L550P, and I252T drastically elevate RAS exchange rates, yet only
stimulate pERK to similar levels as other activating NS mutants.
The positioning of these residues (Fig. 5F) and their involvement
in orienting the PH and HF/Linker modules in relation to the DH
domain indicates a role in coupling the allosteric mechanism to
membrane binding. These mutants are associated with membrane
at similar levels to wild-type (Fig. S5F), induce pERK upon
stimulation (Fig. S5D), and correlate well with data showing a
tetheredDHdomain alone is not capable of inhibiting SOScat (39).
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We can therefore postulate that I252T, Y337C, and L550P show
attenuated activation in cells because of membrane-dependent
conformational defects that hinder interactions with allosteric or
substrate RAS on the membrane surface (Fig. S7). This effect is
absent in solution, resulting in hyperactivation. Taken together,
our data strongly argue that the effects of NS mutations on in-
dividual SOS1 domains are balanced by layered interdomain
interactions and association with biological membranes, resulting
in consistent, low-level RAS activation in cells.
In this article we present an NMR-based methodology to de-

tect defects in RAS GTPase cycling. As GTPase networks are
intricately associated with disease, our methodology should be
a valuable tool toward the detection of GTPase pathway defects,
as well as the identification and characterization of new thera-
peutics targeting these important signaling networks.

Materials and Methods
Plasmid constructs and antibodies, purification of recombinant proteins, cell
culture, RBD pull downs and Western blotting, NMR spectroscopy, membrane
fractionation, and statistical analysis aredescribed in SIMaterials andMethods.

For GTPase analysis, RAS concentration was held consistent at 250 μM. To
calculate the GDP-bound ratio [IGDP/(IGDP + IGTP)], peak intensities were
extracted from individual spectrum with NMRView on at least eight paired
(GTP/GDP) resonances, plotted against time, and data fit to a one-phase ex-
ponential or sigmoidal curve using GraphPad Prism. GAP assays in the presence
of BRAF RBD were plotted using only GDP intensities, as many GTP-specific

resonances undergo large chemical-shift perturbations upon effector binding.
Resulting hydrolysis rates were identical to those calculated using the [IGDP/
(IGDP + IGTP)] ratio, providing the reaction reached completion. All exchange
assays were performed in a 10-fold molar excess of GTPγS to preclude compe-
tition with hydrolysis. For NMR assays incorporating cell extracts, cells were
lysed in NMR buffer [20 mM Tris (pH 7.5), 100 mM NaCl, 1 mM DTT and 5 mM
MgCl2] plus detergent (1% Triton X-100) and protease inhibitors. Lysates were
cleared by centrifugation and could be frozen and stored at −80 °C, or kept on
ice for 24 h with no perceptible loss in activity. For direct comparison of
Schwann cell-derived lysates or those expressing p120GAP, whole-cell extracts
were normalized by total protein concentration. Generally, only 15 μg (exog-
enous p120GAP) to 70 μg (endogenous) of total proteinwas required in 1.7-mm
CryoProbe samples to provide strong induction of RAS GTP hydrolysis. Assays
comparing exchange activities from various SOS1 mutants were performed
with lysates normalized for SOS1 expression through three separate rounds of
immunoblotting and densitometry analysis. Only 15-μg total protein provided
strong exchange activity, although SOS1 required transient expression to sig-
nificantly increase protein levels over those provided by a Tet-inducible system.
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