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SUMMARY

Rheb, an activator of mammalian target of rapamycin
(mTOR), displays low intrinsic GTPase activity
favoring the biologically activated, GTP-bound state.
We identified a Rheb mutation (Y35A) that increases
its intrinsic nucleotide hydrolysis activity �10-fold,
and solved structures of both its active and inactive
forms, revealing an unexpected mechanism of GTP
hydrolysis involving Asp65 in switch II and Thr38 in
switch I. In the wild-type protein this noncanonical
mechanism is markedly inhibited by Tyr35, which
constrains the active site conformation, restricting
the access of the catalytic Asp65 to the nucleotide-
binding pocket. Rheb Y35A mimics the enthalpic
and entropic changes associated with GTP hydro-
lysis elicited by the GTPase-activating protein
(GAP) TSC2, and is insensitive to further TSC2 stimu-
lation. Overexpression of Rheb Y35A impaired the
regulation of mTORC1 signaling by growth factor
availability. We demonstrate that the opposing func-
tions of Tyr35 in the intrinsic and GAP-stimulated
GTP catalysis are critical for optimal mTORC1
regulation.

INTRODUCTION

Small GTPases act as molecular switches to regulate diverse

cellular functions. When bound to guanosine triphosphate

(GTP), they adopt an ‘‘on’’ conformation that elicits a biological

response. GTP hydrolysis is accompanied by a conformational

change into a GDP-bound ‘‘off’’ conformation. Cycling between

the active and inactive states of each GTPase is a result of the

intrinsic nucleotide hydrolysis and exchange rates, and regula-

tory proteins that catalyze these processes. GTPase-activating

proteins (GAPs) stimulate GTP hydrolysis, whereas guanine

nucleotide exchange factors (GEFs) mediate the displacement

of GDP, allowing a new GTP molecule to bind (Bos et al.,

2007). GTPase proteins possess either complete or partial cata-

lytic machinery for hydrolysis of GTP. In most cases an electro-
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negative group is used for stabilization/polarization of the hydro-

lytic water for in-line nucleophilic attack of the g-phosphate (Li

and Zhang, 2004; Maegley et al., 1996). In most Ras and Rho

subfamily GTPases, this is achieved by the carboxamide oxygen

of a conserved Gln in a dynamic loop called switch II. Ras and

RhoGAPswork by stabilizing this Gln in a catalytic conformation,

whereas an Arg residue referred to as an ‘‘Arginine finger’’

neutralizes the developing negative charge on the a- and

b-phosphates of GTP (Scheffzek et al., 1997). In other systems,

such as Rap-RapGAP, a catalytic asparagine is provided in trans

by the GAP (Scrima et al., 2008).

Ras homolog enriched in brain (Rheb) is a key regulator of the

mammalian target of rapamycin (mTOR) complex 1 (mTORC1)

signaling pathway (Dunlop et al., 2009; Inoki et al., 2003).

Rheb-GTP promotes phosphorylation of mTORC1 targets, re-

sulting in enhanced protein translation and cellular growth (Ga-

rami et al., 2003). Rheb has an unusually slow intrinsic GTPase

activity, which is regulated by the GAP activity of tuberous scle-

rosis complex 2 (TSC2), a tumor suppressor frequently inacti-

vated in human patients with the tumor predisposition syndrome

tuberous sclerosis (Garami et al., 2003; Tee et al., 2003). Rheb

overexpression has been observed in certain cancer cell lines

(Eom et al., 2008; Im et al., 2002; Nardella et al., 2008), and

constitutively activated Rheb mutants can induce oncogenic

transformation in cell culture (Jiang and Vogt, 2008). The low

intrinsic GTPase activity of Rheb has been attributed to the cata-

lytically incompetent conformation of Gln64 (Yu et al., 2005),

which is homologous to Ras Gln61, but does not participate in

GTP hydrolysis (Li et al., 2004; Marshall et al., 2009). TSC2GAP

is thought to utilize Asn1643 to promote GTP hydrolysis by

substituting for Gln64 in an ‘‘Asn thumb’’-type mechanism (Inoki

et al., 2003; Marshall et al., 2009) similar to that of RapGAP

(Scrima et al., 2008).

Here, utilizing site-directed mutagenesis, crystallography, and

real-time NMR-based GTPase assays, we discovered that Rheb

Tyr35, a residue that is highly conserved across the small

GTPase superfamily (Wennerberg et al., 2005), maintains the

high activation state of Rheb by inhibiting intrinsic GTP hydro-

lysis. Mutation of this residue substantially accelerated intrinsic

nucleotide hydrolysis through a catalytic mechanism that did

not require Gln64 but also conferred resistance to the activity

of TSC2. Crystal structures of Rheb Y35A led us to identify the

backbone carbonyl of Thr38 and side chain of Asp65 as
d All rights reserved
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Figure 1. Rapid Hydrolysis of mantGTP by Rheb Is Related to Auto-

inhibitory Role of Tyr35

(A) Hydrolysis of GTP or mantGTP by Rheb (black and green, respectively) and

Ras (red and blue, respectively) is shown. Reaction rates derived by curve

fitting are presented in the insets.

(B) Hydrolysis of GTP by WT Rheb (black), and GTP and mantGTP by Rheb

Y35A (green and red, respectively) is presented.

Error bars associated with data points in the curves represent SD of the

fraction GDP reported by several residues. Error bars in the histograms

represent the uncertainty associated with rates derived from curve fitting.

See also Figures S1 and S3.

Structure

Mechanistic View of Rheb GTPase Activity
candidate residues that contribute to the intrinsic GTPase

activity. Mutagenesis studies confirm that Asp65 contributes

significantly to the intrinsic GTPase activity of both wild-type

(WT) Rheb and the Y35Amutant. Furthermore, Asp65 was abso-

lutely essential for the sensitivity of Rheb to the GAP activity of

TSC2, whereas Gln64 was dispensable. Consistent with the

in vitro data, expression of Rheb Y35A and D65A mutants in

mammalian cells affected transduction of growth factor signals

to mTORC1. Taken together, our observations reveal an efficient

noncanonical mechanism of GTP hydrolysis by Rheb and

suggest that autoinhibition of catalysis maintains Rheb in its

highly activated state upon growth factor stimulation, which is

necessary for the proper signal transduction to mTORC1.
Structure 20, 1528–15
RESULTS

Rheb Y35 Inhibits Intrinsic GTPase Activity
We previously showed that fluorescent-tagged nucleotides can

alter the hydrolysis and exchange rates governing the GTPase

cycle (Mazhab-Jafari et al., 2010). The most striking example

we observed was that 20-/30-O-(N0-Methylanthraniloyl) (mant)

GTP was hydrolyzed by Rheb �10-fold faster than GTP. This is

not an intrinsic property of the modified nucleotide because

the mant moiety inhibited GTP hydrolysis by RhoA and did not

affect hydrolysis by Ras. The rate of mantGTP hydrolysis by

Rheb is similar to that of Ras (Figure 1A), indicating that Rheb

has a latent capacity for efficient catalysis. Interestingly,

however, the rapid hydrolysis of mantGTP was independent of

Rheb Gln64 (Mazhab-Jafari et al., 2010). The position of the flu-

orophore in a structure of Ras bound to a nonhydrolyzable

analog of mantGTP (Scheidig et al., 1995) suggested that it

may interact with the phenol ring of Tyr35 in switch I of Rheb.

Remarkably, mutation of Tyr35 to Ala recapitulated the mant

effect, increasing the rate of GTP hydrolysis by an order of

magnitude (Figure 1B). Furthermore, the mant tag had no further

effect on the catalytic activity of Rheb Y35A, suggesting that the

mutation and the fluorophore stimulate hydrolysis through the

same mechanism (Figure 1B). These observations indicate that

Tyr35 autoinhibits the intrinsic GTPase activity of Rheb.

Structural Basis for the Tyr35 Autoinhibitory Function
We crystallized GDP-bound Rheb Y35A in the presence of

excess GMPPNP (a nonhydrolyzable analog of GTP), and to

our surprise, the asymmetric unit contained two molecules of

Rheb: one bound to GDP and one to GMPPNP (Figures 2A–2C;

Table 1). The overall protein fold is very similar to WT Rheb (Yu

et al., 2005) (backbone rmsd of 0.44 Å) with a few key differences.

The nucleotide-binding pocket is completely solvent exposed in

the GMPPNP-bound structure of Rheb Y35A, whereas in the WT

protein the triphosphate group of the nucleotide is shielded from

the solvent by the phenol ring of Tyr35, which forms a hydrogen

bond with the g-phosphate. In addition the g-phosphate is 0.5 Å

closer to Thr38 in the absence of Tyr35 (Figure 2D), which in the

WT structure ‘‘pulls’’ the g-phosphate toward the middle of

switch I. Interestingly, the hydrolytic water is closer to the back-

bone carbonyl of Thr38 in the mutant (2.7 versus 3.8 Å in the WT

protein) (Figure 2D), placing it in a more electron-rich environ-

ment that may enhance its polarization for an in-line nucleophilic

attack to the g-phosphate. It has been proposed that the corre-

sponding backbone carbonyl of Ras (Thr35) contributes to the

stabilization/activation of the catalytic water during intrinsic

GTP hydrolysis (Buhrman et al., 2010; Frech et al., 1994).

Comparison of our structure with that of WT Rheb indicates

that Tyr35 pulls the g-phosphate and catalytic water away from

the Thr38 carbonyl, thus reducing its catalytic contribution.

Switch I of Rheb Y35A does not undergo any substantial

conformational change upon nucleotide hydrolysis, whereas

this region of the WT protein exhibits a large structural change

mediated by an interaction between Tyr35 and the g-phosphate

(Yu et al., 2005) (Figures 2E and 2F). It was hypothesized that

a similar nucleotide-dependent rearrangement of Rap Tyr32

would be energetically unfavorable to the GTPase reaction

(Cherfils et al., 1997), consistent with our observation that
39, September 5, 2012 ª2012 Elsevier Ltd All rights reserved 1529
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Figure 2. Structure and Dynamics of Rheb Y35A

(A) Asymmetric unit and electron density of nucleotide substrates are demonstrated. The asymmetric unit of the Rheb Y35A crystal containing one GDP-bound

(cyan) and one GMPPNP-bound (green) Rheb molecule is shown in the center. 2Fo-Fc electron density maps at 1.5s of the nucleotide-binding site with GMPPNP

(left) fitted into one Rheb Y35A molecule and GDP (right) in the second molecule of the crystal asymmetric unit is illustrated. Areas bounded by dashed-line

rectangles are expanded on the left and right.

(B) Ribbon model of GMPPNP-bound Rheb Y35A is shown. Areas bounded by dashed-line rectangles are expanded in (D) and (G), as indicated.

(C) Ribbon model of GDP-bound Rheb Y35A in the same orientation as (B) is presented. Area bounded by dashed-line rectangle is expanded in (E).

(D)–(G) show overlays of GMPPNP- or GDP-bound Rheb Y35A (colored as above) andWT Rheb in complex with GMPPNP(1XTR) (magenta) or GDP(1XTQ) (gray), as

indicated. (D) Mutation of Tyr35 affects the position of the catalytic water (spheres) and g-phosphate with respect to the carbonyl of Thr38. (E) Minor confor-

mational change of Ala35 in the Rheb mutant upon GTP hydrolysis. The Ala35 Ca and Cb translocation distances from the GMPPNP-bound form to the

GDP-bound form are shown with dotted lines. (F) Major conformational rearrangement of WT Rheb Tyr35 upon GTP hydrolysis, with translocations indicated as
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Table 1. Data Collection and Refinement Statistics

Rheb Y35A

Data Collection

Space group P 2 21 21

Cell dimensions

a, b, c (Å) 57.2, 69.9, 79.2

a, b, g (�) 90, 90, 90

Resolution (Å) 46.4–2.0 (2.07–2.0)a

Rsym 9.3 (41.2)

I/sI 20.7 (4.6)

Completeness (%) 99.7 (100)

Redundancy 7.0 (6.6)

Refinement

Resolution (Å) 26.9–2.0

No. of reflections 21,742

Rwork/Rfree 16.2/21.4

No. of atoms

Protein 2,766

Ligand/Mg2+ ion 62/2

Water 252

B factors

Protein 26.3

Ligand/Mg2+ ion 21.6/24.2

Water 30.3

Rmsds

Bond lengths (Å) 0.007

Bond angles (�) 1.14

Ramachandran statistics

Most favorable regions (%) 96.7

Allowed regions (%) 3.3

Disallowed regions (%) 0

Values in parentheses are for highest-resolution shell.
aData set was collected from one crystal.
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nucleotide hydrolysis is accelerated by a mutation that disrupts

this conformational change.

Identification of a Catalytic Residue for GTP Hydrolysis
Previous work has shown that Gln64, corresponding to the cata-

lytic Gln61 of Ras, is not involved in GTP hydrolysis by WT Rheb

(Inoki et al., 2003; Li et al., 2004; Marshall et al., 2009). Likewise,

Gln64 remains in a noncatalytic conformation in the structure of

Rheb Y35A (see Figure S1A available online) and is not required

for the accelerated hydrolysis of GTP by Rheb Y35A (Figures

S1D and S2A). Because the catalytic residues of other small

GTPase superfamily members are found in the N terminus of

switch II, we examined this region for residues with electroneg-
in (E). (G) Position of switch II residues relative to the nucleotide-binding site in th

N-terminal switch II residues Gly63-Ser68 and side chains of Asp65 and Glu66 a

(H) 1H-15N HSQC spectra illustrating cross-peaks from switch II residues inWT Rh

is illustrated at a higher contour level for clarity. The reduction in height of the pe

bottom of each panel in which it is measurable. The full spectra are shown in Fig

See also Figures S3 and S4.
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ative side chains that may contribute to the hydrolytic reaction.

Immediately downstream of Gln64 are two residues with acidic

side chains: Asp65 and Glu66 (Figure 2G). The crystal structure

of Rheb Y35A shows that the backbone of the N-terminal loop

of switch II of this mutant is displaced by an average of 1 Å

toward the nucleotide-binding pocket relative to the WT, which

brings the side-chain carboxylate of Asp65 closer to the nucleo-

tide by 1 Å: average Asp65Od1,2
WT � average Asp65Od1,2

Y35A

(Figure 2G). Mutation of Asp65 to Ala reduced the intrinsic hydro-

lysis of Rheb Y35A by more than 60% and that of WT by 30%

(Figure 3A), as did the conservative substitution of Asp65 by

Asn (Figure S2B). On the other hand, mutations of Glu66 had

no effect on intrinsic GTPase activity (Figure S2C), consistent

with its perpendicular orientation away from the nucleotide (Fig-

ure 2G). We also tested all other residues found within 10 Å of the

hydrolytic water in the Rheb Y35A structure that could potentially

provide (1) a negative charge to activate this water molecule, or

(2) a positive charge to stabilize the b- and g-phosphates in the

transition state for hydrolysis (Figure S1). There was no change

in the rate of intrinsic nucleotide hydrolysis associated with

R15G, S16A, or D36A mutations (Figures S1B, S1C, and S1E).

The only other charged residues within 10 Å of the hydrolytic

water are Lys19 and Asp60 of the highly conserved G1 and G3

box motifs, respectively. The Rheb K19A mutant failed to

express, presumably due to impaired nucleotide binding, and

D60A was highly unstable and could not be loaded with GTP,

consistent with the role of this residue in Mg2+ coordination (Yu

et al., 2005). These data strongly suggest that Asp65 is the

sole candidate for a catalytic residue in Rheb. Notably, carbox-

ylates are more potent nucleophiles than carboxamides, and

consistently, the Q61E substitution increased the GTPase

activity of Ras (Frech et al., 1994).

In the structure of WT Rheb, the carboxylate of Asp65 is 12 Å

(average Asp65Od1,2) from the g-phosphate in a single confor-

mation, whereas the electron density of Rheb Y35A indicates

that Asp65 exists in two conformations, 11.0 and 12.0 Å from

the g-phosphate, respectively (Figure S1F). By comparison the

catalytic carboxamide of Ras (Gln61O
ε
) has been found at

distances varying from 4.7 to 12.2 Å from the g-phosphate

(median distance of 8.1Å) (Figure S3A) in available crystallo-

graphic snapshots, consistent with the dynamic nature of switch

II determined by NMR studies (Ito et al., 1997). Thus, despite its

established role as a catalytic residue (Frech et al., 1994), Gln61

is rarely found in a catalytically competent conformation in Ras

crystal structures, presumably because this state is transient

and energetically unfavorable (Fraser et al., 2011; Grant et al.,

2009). Similarly, our Y35A structure and the previous WT Rheb

structure (Yu et al., 2005) both appear to be energetically stable

states, with the conformations of Asp65 stabilized primarily by

ionic and polar interactions with the Arg15 and Ser68 side

chains, which are also found in two alternate conformations in

our structure (Figure S1F). Interestingly, comparison of WT and
e activated form of WT Rheb versus that of the Y35A mutant. The backbone of

re shown. Two conformations were observed for the Asp65 side chain.

eb (black) and Rheb Y35A (red) in complex with GTP. The panel showing Ser68

ak from the mutant relative to the WT peak is indicated as a percentage at the

ure S4A.
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Figure 3. Role of Asp65 in Intrinsic and GAP-Mediated GTP Hydro-

lysis by Rheb

(A) Hydrolysis of GTP by WT Rheb (black), the mutants D65A and Y35A (blue

and green, respectively), as well as the double-mutant Y35A-D65A (red) is

illustrated. Reaction rates derived by curve fitting are presented in the insets.

(B) Sensitivity of WT Rheb and Asp65 mutants to TSC2GAP-stimulated GTP

hydrolysis is shown. WT, WT+GAP, D65A+GAP, D65E+GAP, and D65N+GAP

are shown with black, blue, green, yellow, and red, respectively.

Error bars associated with data points in the curves represent SD of the

fraction GDP reported by several residues. Error bars in the histograms

represent the uncertainty associated with rates derived from curve fitting.

See also Figures S1, S2, and S5.
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Y35A 1H-15N heteronuclear single-quantum coherence (HSQC)

spectra revealed increased line broadening for residues in the

P loop and the N terminus of switch II of GTP-bound Rheb

Y35A (Figures 2H and S4A), suggesting elevated dynamics in

ms-ms timescale. This could allow the N terminus of switch II to

sample alternate conformations closer to the nucleotide and

the catalytic water. The elevated dynamics of the N-terminal

region of switch II and its proximity to the nucleotide-binding

site in Rheb Y35A is consistent with the greater impact on catal-

ysis of Asp65 mutations in the Y35A mutant than in WT Rheb

(Figure 3A). Hence, in addition to affecting the orientation of
1532 Structure 20, 1528–1539, September 5, 2012 ª2012 Elsevier Lt
the nucleotide and hydrolytic water, Tyr35 may reduce the

intrinsic GTPase activity of Rheb by restricting the dynamics of

switch II and displacing it from the nucleotide-binding site. Rela-

tive to Ras, the catalytic Gln residues of Rho subfamily GTPases

were found closer to the g-phosphate (median distance of 5.5Å)

(Figures S3A and S3C), which may contribute to their faster

intrinsic nucleotide hydrolysis rate (Mazhab-Jafari et al., 2010).

On the other hand, Gln63, which was recently proposed to be

a noncanonical catalytic residue of Rap in GAP1IP4BP-mediated

GTP hydrolysis (Sot et al., 2010), is found with a median distance

of 11.8 Å from the g-phosphate in structures of free Rap (Fig-

ure S3A), consistent with the slow nucleotide hydrolysis of this

GTPase.

In Ras, Gly12, Gly13, and Gln61 are the major sites of onco-

genic mutations. Mutation of Ras Gly12 to any other residue

hinders GTP hydrolysis by sterically occluding access of the

catalytic residue Gln61 to the hydrolytic water and nucleotide

(Krengel et al., 1990). However, Rheb has an Arg in this position,

and its mutation to Gly (R15G) does not increase the catalytic

activity of Rheb Y35A (Figure S1E) or WT (Im et al., 2002; Li

et al., 2004; Marshall et al., 2009; Yamagata et al., 1994).

The distinctive impact of P loop residues on the activities of

Ras and Rheb lends further support to the different molecular

mechanisms of action of these two closely related GTPase

homologs.

Involvement of Rheb’s Asp65 and Tyr35 in TSC2GAP-
Mediated GTP Hydrolysis
Mutation of the solvent-exposed residue Asp65 to Ala (D65A) did

not perturb the structure of Rheb, on the basis of minimal and

localized chemical shift perturbations in the 1H-15N HSQC

spectra that were mainly confined to switch II (Figure S5), but

totally abolished the susceptibility of Rheb to the GAP activity

of TSC2 (Figure 3B). Furthermore, even conservative mutations

of Asp65 (D65E/N) rendered Rheb totally insensitive to the

activity of TSC2GAP. The strict requirement for the geometry

and charge of this side chain suggest that it might be a critical

catalytic residue for the GAP-mediated hydrolysis reaction. We

also tested the sensitivity of the GTPase activity of Rheb Y35A

to the action of TSC2GAP and found that the GTPase activity

of this mutant was not further stimulated by the addition of the

GAP domain of TSC2 (Figure 4A). An analogous mutation

(Y32A) impaired the sensitivity of Rap GTPase to the function

of RapGAP (Brinkmann et al., 2002; Scrima et al., 2008);

however, a conservative mutation (Y32F) was tolerated. Interest-

ingly, the Y35F mutation was sufficient to render Rheb insensi-

tive to the function of the TSC2GAP (Figure 4B), highlighting

differences in the details of molecular recognition in these two

homologous systems.

Thermodynamic Basis for the Tyr35 Autoinhibitory
Function
To better understand the energetic basis of Tyr35 autoinhibition,

we analyzed the thermodynamics of the GTP hydrolysis reaction

using an Arrhenius plot (Figure S6). This powerful technique

allows one to extract energetic parameters, such as enthalpy,

entropy, and free energy, from the highly unstable and low-popu-

lated transition state of an enzymatic reaction. The increased

catalytic activity of Rheb Y35A was associated with a large
d All rights reserved
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Figure 4. Tyr35 Hydroxyl Is Required for TSC2GAP-Assisted GTP

Hydrolysis

(A) Intrinsic and GAP-catalyzed GTP hydrolysis by Rheb Y35A is presented.

(B) Intrinsic and GAP-catalyzed GTP hydrolysis by Rheb Y35F is demon-

strated. In both graphs the GTPase activities of mutant Rheb with and without

TSC2GAP are shown in black and green, respectively, and the TSC2GAP-

catalyzed GTP hydrolysis by WT Rheb is shown in blue.

Error bars associated with data points in the curves represent SD of the

fraction GDP reported by several residues. Error bars in the histograms

represent the uncertainty associated with rates derived from curve fitting.

See also Figure S4.

Table 2. Summary of Thermodynamic Activation Parameters

Calculated for GTP Hydrolysis by Rheb WT and Mutants

Protein WT Y35A Y35F Y35A-D65A D65A TSC2GAPa

DHz 86.0 52.3 52.7 55.6 87.0 41.3

TDSz �13.5 �43 �43.3 �41.6 �13.3 �51.8

DGz 99.5 95.3 96.0 97.2 100.3 93.1

Free energy of activation (DGz), activation enthalpy (DHz), and activation

entropy (TDSz) are in kJ/mol. T is set to 298 K in the equation DGz =

DHz � T DSz. See also Figure S6.
aValues from Marshall et al. (2009).
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reduction in the activation enthalpy for GTPhydrolysis (Figure S6;

Table 2). However, the activation entropy was also reduced

(unfavorable contribution), resulting in a modest decrease in

the overall activation free energy of the nucleotide hydrolysis

reaction in the mutant. Because there is a buildup of negative

charge on the b-g-bridging oxygen during GTP hydrolysis (Allin

et al., 2001; Cepus et al., 1998; Du et al., 2000), the proximity

of the electron-rich phenol ring of Rheb Tyr35 could destabilize

the transition state, which is consistent with the reduction in

activation enthalpy associated with mutation of this residue.

Interestingly, the Arg fingers of Ras- and Rho-GAPs accelerate

nucleotide hydrolysis of their cognate GTPases by providing

positive charge in a position equivalent to that of Rheb Tyr35.

Another contribution to the enthalpic term may come from the

strengthened hydrogen bond between the Thr38 carbonyl in
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the mutant and the repositioned catalytic water, which may be

more reactive toward the g-phosphate (Frech et al., 1994).

The larger negative value of DSz for Rheb Y35A indicates that

formation of the transition state requires the mutant to undergo

a larger increase in ‘‘order’’ than the WT protein. In the crystal

structure of WT Rheb-GMPPNP, a hydrogen bond between

the hydroxyl of Tyr35 and the g-phosphate of GMPPNP stabi-

lizes switch I, contributing to the order of the ground state.

Disruption of this contact by mutation of Tyr35 increases the

disorder in switch I, as illustrated by partial spectral broadening

of peaks from residues 27–30 of GTP-bound Rheb Y35A (Fig-

ure S4). Thus, assembly of the ordered transition state from

the more flexible Rheb Y35A ground state would be more entro-

pically unfavorable. The conservative mutation Y35F increased

intrinsic hydrolysis almost as much as Y35A with similar thermo-

dynamic effects (Figure S6; Table 2), suggesting that the H bond

between the hydroxyl of Tyr35 and the g-phosphate is critical for

the autoinhibition of Rheb’s GTPase activity. It is very interesting

to note that the thermodynamic landscape of intrinsic GTP

hydrolysis in the Y35A mutant (reduced activation enthalpy

with an entropic penalty) is similar to that reported for

TSC2GAP-mediated GTP hydrolysis in WT Rheb (Marshall

et al., 2009), suggesting that TSC2GAP may promote hydrolysis

in part by disrupting the electrostatic contact between Tyr35 and

the g-phosphate. Consistent with this hypothesis, the increased

rate of GTP hydrolysis by the Rheb Y35A/Y35F mutants is not

further accelerated by the addition of the GAP (Figure 4). The

larger reduction of the activation enthalpy by TSC2GAP-medi-

ated catalysis compared to Y35A mutation suggests that the

GAP provides additional stimulatory electrostatic contributions

to GTP hydrolysis, perhaps via complementation of the intrinsic

catalytic machinery by the Asn thumb. On the other hand the

larger unfavorable reduction in entropy of the GAP-mediated

reaction could be due to complex formation between Rheb

and the GAP domain of TSC2.

Mutation of Asp65 substantially impairs the stimulatory effect

of the Y35A mutation on intrinsic hydrolysis; hence, we

measured the thermodynamic parameters of the transition state

for the Rheb double-mutant Y35A-D65A (Table 2). Mutation of

Asp65 increased the activation enthalpy (DHz) of Rheb Y35A,

indicating that the negatively charged carboxylic acid side chain

of Asp65 stabilizes the transition state because the enthalpic

term originates primarily from electrostatic interactions (Kötting

and Gerwert, 2004). In Ras the enthalpic contribution to hydro-

lysis was attributed to the charge shift from the g- toward the

b-phosphate (Kötting and Gerwert, 2004). We propose that
39, September 5, 2012 ª2012 Elsevier Ltd All rights reserved 1533
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Figure 5. Mutations of Rheb Catalytic and Autoinhibitory Residues Impact Rheb’s Activation Level andmTORC1 Phosphorylation of p70 S6K

(A) Signaling pathway by which growth factors stimulate mTORC1 phosphorylation of p70 S6K is illustrated.

(B) Normalized values of p70 S6K phosphorylation for cells starved (�) or stimulated (+) with serum and insulin for 15 min (left) or 6 hr (right) are shown as bar

graphs. The background intensity was used as estimation for the error in the intensity measurements and propagated appropriately throughout division. More

details are described in Experimental Procedures. Representative western blots are shown in Figure S7.

(C) Rheb nucleotide loading monitored in HEK293 cells with 32P-labeling experiment as described in Experimental Procedures is presented.

See also Figure S7.
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electrostatic interactions between Rheb Asp65 and the nucleo-

tide similarly shift charge in the transition state to promote hydro-

lysis. Interestingly, Tyr35 reduces the enthalpic contribution of

Asp65 to GTP hydrolysis, DDHz(Y35A-Y35A,D65A) > DDHz(WT-D65A)

(Table 2), which is consistent with our kinetic data (Figure 3A).

Regulation of mTORC1 by Growth Factors Involves the
Noncanonical Catalytic and Autoinhibitory Mechanisms
To investigate the role of Rheb’s catalytic machinery, and its

autoinhibition, in the activation of mTORC1, HeLa cells were

transfected with WT Rheb or the Y35A or D65A mutants. Phos-

phorylation of p70 S6K Thr389, a measure of mTORC1 signaling

throughput (Figure 5A), was monitored by immunoblotting,

upon growth factor starvation, as well as 15 min and 6 hr after
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growth factor stimulation (Figures 5B and S7). Following growth

factor stimulation, when the TSC1/TSC2 complex is downregu-

lated (Benvenuto et al., 2000; Chong-Kopera et al., 2006), muta-

tion of Rheb Tyr35 to Ala reduced the activation of mTORC1, as

evidenced by slightly lower p70 S6K phosphorylation despite

higher Rheb Y35A expression compared to Rheb WT, an effect

made more apparent with longer stimulation (Figures 5B and

S7). Remarkably, in the absence of stimuli upon serum starva-

tion, Rheb Y35A led to a significant increase in mTORC1

activity, as did the expression of the GAP-resistant mutant

Rheb D65A (Figure 5B). Mutation of Asp65 (but not Tyr35) per-

turbed the chemical shift of the neighboring switch II residue

Tyr67 (Figures S4A and S5), previously shown to be critical

for activation of mTORC1 (Long et al., 2007), which may affect
d All rights reserved



Structure

Mechanistic View of Rheb GTPase Activity
the ability of Rheb D65A to fully activate mTORC1. This may

explain the fact that under conditions of growth factor stimula-

tion, Rheb D65A induced less S6K phosphorylation than the WT

protein, despite its reduced intrinsic GTPase activity

(Figure 5B).

Guanine nucleotide loading of WT Rheb and the mutants

in vivo was determined by their immunoprecipitation from

HEK293 cells metabolically labeled with 32P-orthophosphate

and nucleotide resolution by thin-layer chromatography (Fig-

ure 5C). Consistent with its increased GTPase activity, Rheb

Y35A displayed reduced loading of GTP, whereas Rheb D65A

showed modestly increased GTP loading. Reflected in the

elevated loading of WT Rheb with GTP (Figure 5C), the over-

abundance of transfected Rheb proteins likely negates the

effects of endogenous TSC2 on the overexpressed Rheb

mutants in this cell line. Although the lower GTP loading of

Rheb Y35A indicates higher intrinsic hydrolysis rate than that

of the WT protein, modestly increased GTP loading of D65A

signifies the autoinhibitory effects of Tyr35 on Asp65’s contribu-

tion to intrinsic catalysis, consistent with their in vitro behavior

(Figure 3A).

DISCUSSION

GTPases are versatile molecular switches that utilize surprisingly

diversemechanisms tomediate the interconversion between the

active and inactive states. The study presented here illustrates

how Rheb evolved a GTP hydrolysis mechanism drastically

different from its close homolog H-Ras. Rheb employs an auto-

inhibitory mechanism to maintain a high activation state in cells

essential for the proper maintenance of mTORC1 signaling and

cellular growth.

The autoinhibitory mechanism functions via an interaction

between Rheb Tyr35-OH and the g-phosphate of GTP, which

hinders GTP hydrolysis. Interestingly, our investigation of this

inhibitory mechanism led to the elucidation of an unusual Rheb

catalytic mechanism involving Asp65, which is one position

downstream of the canonical catalytic Gln, equivalent to Ras

Gln61 and Rho Gln63. In the canonical mechanism the catalytic

water is activated/stabilized by interaction with an electronega-

tive group, the carboxamide oxygen of a glutamine, provided

either in cis or trans (Bos et al., 2007). Although an equivalent

residue (Gln64) is present in the sequence of Rheb switch II,

our work demonstrates that the catalytic function is carried out

by the adjacent Asp65.

A Tyr residue in switch I is highly conserved among the

GTPase superfamily; however, the functional role of this residue

varies. For example in RhoA, Tyr34 stimulates intrinsic hydro-

lysis, presumably by stabilizing the catalytic conformation of

Gln63 in switch II, whereas Ras Tyr32 is solvent exposed and

does not impact the intrinsic hydrolysis (Figure S3). In Rheb,

Tyr35 counters the contribution of Asp65 to catalysis by restrict-

ing the dynamics of switch II and reducing its access to the cata-

lytic site (Figure 6). Severe peak broadening was observed for

the amides of Gly63, Gln64, Asp65, and Glu66 in the 1H-15N

HSQC spectrum of the Y35A mutant (Figure 2H), presumably

the result of disrupting the H bond network from Tyr35 to the

amide of Gly63 through the catalytic water and the g-phosphate

(Figure 2D). Moreover, Tyr35 restricts the position of the hydro-
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lytic water and reduces its polarization by the carbonyl of

Thr38, which is thought to promote hydrolysis (Buhrman et al.,

2010; Frech et al., 1994). The residual catalytic activity found in

Rheb D65A may reflect the stimulatory effect of the Thr38 back-

bone carbonyl in polarization and/or stabilization of the hydro-

lytic water. Upon mutation of Tyr35, Asp65 adopts two confor-

mations, one of which is more proximal (relative to the WT) to

the nucleotide-binding site and appears better positioned for

hydrolysis (Figure 2G), consistent with our finding that mutation

of Asp65 has a greater impact on the catalytic activity of Rheb

Y35A than that of WT (Figure 3A). On the basis of the multiple

crystallographic conformations of Asp65, and the NMR peak

broadening, we propose that in both WT and Y35A Rheb, switch

II exists in an ensemble of conformations, some of which allow

Asp65 to adopt a catalytic conformation closer to the nucleotide.

Structural evidence implicating Asp as a catalytic residue

exists for at least one other member of the GTPase superfamily,

the signal recognition particle (SRP) Ffh/FtsY (Focia et al., 2004),

which is a large dimeric prokaryotic GTPase that is highly diver-

gent from theRas family. Nevertheless, to our knowledge, a cata-

lytic Asp has not been previously reported within the Ras

subfamily. On the other hand the inhibitory role for a switch I

Tyr we discovered in Rheb may be relevant in inhibiting the

intrinsic hydrolytic machinery in certain other GTPases, such

as Ran (Brucker et al., 2010).

Our structural analysis of Rheb also shed further light on the

mechanism of TSC2GAP-mediated hydrolysis of GTP. We

propose that whereas providing an Asn thumb as a means of

accelerating catalysis, TSC2GAPmay also stimulate theGTPase

activity of Rheb by relieving autoinhibition and aligning Rheb’s

catalytic machinery (Figure 6C). Interaction of TSC2 with Rheb

switch I may disrupt the electrostatic contact between Tyr35

and the g-phosphate, reducing the autoinhibitory effect of this

residue onGTP hydrolysis, explaining the functional and thermo-

dynamic similarities between WT Rheb in the presence of the

TSC2GAP and the Rheb Y35A mutant alone. A common theme

in GAP-stimulated GTP hydrolysis is repositioning of the N

terminus of switch II relative to the nucleotide-binding site to

allow for efficient catalysis. For example the RanGAP Asn thumb

serves to properly orient the catalytic Gln69 of Ran (Bos et al.,

2007; Seewald et al., 2002). Similarly, GAPIP4BP has been

proposed to promoteRapGTPhydrolysis by repositioning a non-

canonical catalytic glutamine residue, Gln63, located two posi-

tions C terminal to the position corresponding to Ras Gln61

(Sot et al., 2010). In the case of Rheb, we propose that Rheb-

TSC2GAP interaction stabilizes Asp65 closer to the g-phosphate

to catalyze GTP hydrolysis in synergy with the Asn thumb

(Asn1643) provided by TSC2GAP. The delineation of the precise

details of TSC2-mediated catalysis will require a more detailed

structural analysis of the Rheb:TSC2GAP complex that is

hindered by the transient nature of their interaction observed

by us and others (Marshall et al., 2009; Scrima et al., 2008), pre-

venting us from distinguishing impaired binding from impaired

catalysis.

The Tyr35-mediated autoinhibition of Rheb’s GTPase reac-

tion is necessary to maintain the appropriate level of activation

of this small GTPase, and thus mTORC1 signaling, in response

to growth factors. When growth factors are available, TSC2GAP

activity becomes limiting, and Tyr35 inhibits GTP hydrolysis,
39, September 5, 2012 ª2012 Elsevier Ltd All rights reserved 1535
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resulting in mTORC1 upregulation. In the absence of stimula-

tion, Rheb Tyr35 is required for productive TSC2GAP-mediated

acceleration of GTP hydrolysis to shut down mTORC1

signaling. Indeed, overexpression of Rheb Y35A substantially

uncouples mTOR signaling from growth factors. In cells overex-

pressing WT Rheb, mTOR signaling was strongly responsive to

the availability of serum and insulin, whereas this response was

significantly dampened in cells overexpressing the Y35A

mutant.

To our knowledge, this is the first example of a distinct mech-

anism of intrinsic nucleotide hydrolysis within the Ras subfamily,

which may be relevant to some other Ras superfamily GTPases,
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particularly those that lack the canonical

catalytic Gln in switch II (e.g., Rap

GTPases). This study provides a view

into an unusual mechanism of GTP

hydrolysis by Rheb and an intriguing

autoinhibitory interaction that blocks this

GTPase reaction.

EXPERIMENTAL PROCEDURES

Protein Preparation

Mus musculus Rheb (residues 1–169) WT and

mutants and TSC2 GAP domain (residues 1,525–

1,742) were prepared according to previous proto-

cols (Mazhab-Jafari et al., 2010). In brief the

proteins were expressed in Escherichia coli

(BL21) using pGEX2T vector, grown in minimal

media supplemented with either 14NH4Cl or
15NH4Cl at 15

�C with 0.25 mM IPTG. Mutagenesis

was performedwith theQuikChange Site-Directed

Mutagenesis Kit. Small GTPase proteins ex-

pressed in E. coli copurified mainly as complexes

with GDP nucleotide. Rheb and TSC2 proteins

were initially purified using glutathione Sepharose,

cleaved from the GST tag by thrombin, and further

purified via Superdex 75 size exclusion chroma-

tography. Human H-Ras (residues 1–171) and

murine RhoA (residues 1–181) were expressed

using pET15b and pET28, respectively, and puri-
fied by Ni-NTA followed by Superdex 75 after removal of the His tag with

thrombin.

Crystallization and Data Collection

Crystals of Rheb (residues 1–169) Y35A mutant were grown at room temper-

ature with seeding using the hanging drop vapor diffusion method. The protein

solution contained 20mM Tris hydrochloride (Tris-HCl) (pH 8.0), 100mMNaCl,

5 mMMgCl2, and 0.02% NaN3 w/v. The protein was concentrated to 870 mM,

and GMPPNP was added to a final concentration of 3.8 mM. The solution was

allowed to sit at room temperature for 4 hr for nucleotide exchange and then

placed at 4�C overnight. Crystallization experiments were set at room temper-

ature by mixing equal volumes of the protein solution with the well solution

(100 mM Tris-HCl [pH 8.5], 200 mM sodium acetate trihydrate, and 30% w/v

Polyethylene Glycol 4000). Seed crystals (grown at 4�C from a 360 mM protein
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solution containing 1.56 mM GMPPNP and a well solution of 100 mM Tris-HCl

[pH 8.5], 200mM sodium acetate trihydrate, and 30%w/v Polyethylene Glycol

4000) were added in serial dilution to hanging drops to promote crystal growth.

Resulting crystals were soaked in a cryoprotective solution containing 25%

PEG 400 and flash frozen in liquid nitrogen. The diffraction data were collected

using an R-Axis IV++, Rigaku RUH3R rotating anode generator equipped with

Osmic optics and an X-stream cryosystem for data collection at a temperature

of 100 K with a wavelength of 1.54 Å and processed using HKL2000 (Otwinow-

ski and Minor, 1997).

Structure Determination and Refinement

The phase problem was solved by molecular replacement method using the

structure of WT Rheb (PDB 1XTR) as a search model. Successive rounds of

refinements and manual model building were performed to construct the final

model. PHENIX was used for both phase determination and structure refine-

ment (Adams et al., 2010), whereas manual model building was performed in

Coot (Emsley and Cowtan, 2004). During the course of refinement, density

for the nucleotides could be clearly seen in difference electron density

maps, which allowed us to manually position GMPPNP bound to one Rheb

molecule and GDP bound to the other Rheb molecule in the asymmetric

unit. The refinement statistic can be found in Table 1.

NMR-Based GTPase Assays

Rheb WT and mutants were loaded with GTP or mantGTP by incubation with

a 10- to 20-fold molar excess of nucleotide in the presence of 10 mM EDTA.

Full nucleotide loading was confirmed by collecting a sensitivity-enhanced
1H-15N HSQC spectrum, and the mixture was then passed through a desalting

column (PD MidiTrap G-25; GE Healthcare) equilibrated with NMR buffer

(20 mM sodium phosphate [pH 7.0], 100 mM NaCl, 5 mM MgCl2, 1mM DTT,

and 5% D2O), to produce a 1:1 complex of GTPase and the nucleotide for

the kinetic measurements. Nucleotide loading of Ras was achieved by the

same method; however, in the case of RhoA, 0.5 M urea was included to facil-

itate the EDTA-mediated nucleotide exchange and was removed by the de-

salting column (Mazhab-Jafari et al., 2010).

NMR experiments were run on a Bruker AVANCE II 800 MHz spectrometer

equipped with a 5 mm TCI CryoProbe or a 600 MHz spectrometer equipped

with TCI 1.7 mm MicroCryoProbe. Sensitivity-enhanced 1H-15N HSQCs with

four scans (10 min) were run in succession for monitoring the GTP hydrolysis

reactions at a temperature of 20�C using GTPase concentrations of 0.1–

0.3 mM. The spectra were then processed with NMRPipe (Delaglio et al.,

1995), and GDP- and GTP-specific peak heights were analyzed via Gaussian

line fitting using SPARKY (Goddard and Kneller). Residues from switch I and II,

P loop, b3 and b4, and the a3 helix that exhibit distinctwell-resolved resonances

in each nucleotide-bound form were used as reporters of the reaction rates, as

described previously (Marshall et al., 2009;Mazhab-Jafari et al., 2010). The frac-

tion of GTPase protein in the GDP-bound state was calculated for each reporter

residue using the following equation: IGDP/(IGDP+IGTP), where I represents inten-

sity, and plotted against time. In the case of RhoA, the decay of IGDP peaks was

used in the rate calculation, as described previously (Gasmi-Seabrook et al.,

2010;Mazhab-Jafari et al., 2010). Data fittingwas done usingPRISM (GraphPad

software). To assayGAP-mediated nucleotide hydrolysis, TSC2GAPwas added

to GTP-loaded Rheb at a GAP to GTPase molar ratio of 1:2.

Thermodynamic Measurements

All assays for thermodynamic measurements of WT, Y35A, Y35F, Y35A-D65A,

and D65A Rheb were run on 600 MHz spectrometer at a protein concentration

of 0.5 mM in 20 mM HEPES (pH 8.0), 100 mM NaCl, 5 mM MgCl2, 2 mM DTT,

and10%D2Owith four scans.TheGTPaseassayswere runat four temperatures

(287, 292, 296, and 301.5 K), and Arrhenius plots were constructed by plotting

ln(k) asa functionof1/T (K),wherek is the rateofGTPhydrolysis ins�1.Activation

energy (Ea) and activation entropy (DSz) values were calculated from the slope

and y-intercept, respectively, as described previously. The activation enthalpy

(DHz = Ea � RT) and the free energy of activation (DGz = DHz � T DSz) were

then calculated with T set to 298 K. The DGz values are reported in kJ/mol.

Cell-Based Phosphorylation Assay

All chemicals were purchased from Sigma-Aldrich unless stated otherwise.

Antibodies against p70 S6 Kinase and p70 S6 Kinase phosphorylated at
Structure 20, 1528–15
Thr389 were from Cell Signaling Technology, and Anti-Myc 9E10 is described

previously by Buerger et al. (2006). Murine Rheb cDNA was obtained from

Open Biosystems and subcloned into pcDNA3.1 myc-His. The Rheb muta-

tions were generated by site-directed mutagenesis (Agilent).

HeLaBT cells were cultured in Dulbecco’s modified Eagle’s medium

containing 10% fetal calf serum (DMEM/10% FCS) and transfected using

the calcium phosphate precipitation method. Twenty-four hours after trans-

fection, the media were replaced with serum-free DMEM. Forty-eight

hours after transfection, cells were either further starved, or stimulated for

15 min or 6 hr with DMEM/10% FCS and 10 mg/ml insulin. Cells were then

lysed in CHAPS lysis buffer (40 mM HEPES [pH 7.5], 0.3% CHAPS, 120 mM

NaCl, 1 mM EDTA, 10 mM pyrophosphate, 50 mM NaF, 1 mM Na2VO3,

20 mM b-glycerophosphate, and protease inhibitors). Total protein in

lysates was quantified using Bradford reagent (Bio-Rad), and equalized.

Samples were then boiled in SDS-PAGE sample buffer, separated by

SDS-PAGE, and transferred to PVDF membranes. After blocking in 5%

BSA in TBS-T (50 mM Tris-HCl [pH 7.5], 150 mM NaCl, and 0.1%

Tween 20), membranes were probed with the indicated antibodies and

visualized with HRP-conjugated secondary antibodies using the ECL system

(Amersham).

The band intensities of p70 S6K P-Thr389, total S6K, and Myc-Rheb for

each lysate were measured using ImageJ software (NIH). Normalized p70

S6K P-Thr389 values were determined using the formula ((p70 S6K

P-Thr389)/(total S6K))/(Myc-Rheb), and the value for Rheb WT under growth

factor-stimulated condition was set to 100 for each time point after starva-

tion/stimulation.

Nucleotide Binding In Vivo

Labeling was done according to previous protocols by Wolthuis et al. (1997)

with the following modification. HEK293 cells were seeded in a 6-well plate

and transfected with 2.5 mg of DNA using the calcium-phosphate method.

The followingmorning, cells were washed andmaintained in DMEMcontaining

10% FBS, and 6 hr later, their media were replaced with phosphate- and

serum-free DMEM and the cells incubated for 1 hr. Cells were labeled with

250 mCi/ml of [32P]orthophosphoric acid (PerkinElmer) overnight. Cells were

washed with cold PBS and lysed in 750 ml of 50 mM Tris (pH 7.4), 140 mM

NaCl, 1 mM KCl, 2 mM MgCl2, 1% Triton X-100, protease inhibitor cocktail.

Lysates were precleared with 20 ml of protein A Sepharose for 20 min. Myc-

Rheb was immunoprecipitated with 1 mg of anti-myc antibody (Cell Signaling)

for 2 hr and 20 ml of protein A Sepharose for 30 min. Immunoprecipitates were

washed four times in lysis buffer containing 500 mM NaCl and twice in lysis

buffer with 0.1% Triton X-100. Nucleotides were eluted in 20 ml of 2 mM

EDTA, 2mMDTT, 0.2%SDS, 1mMGDP, 1mMGTP at 68�C for 15min. Eluted

nucleotides were separated by spotting 10 ml on PEI cellulose TLC plates and

resolved in 0.75 M KH2PO4 (pH 3.4). Air-dried TLC plates were exposed using

a phosphorimager and GTP/GDP ratios calculated using ImageQuant 5.2

software.
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